

RTips Technologies

Modbus Master Protocol Library - User Manual Page 1

 User Manual - Modbus Master

Protocol Library - ‘C’ Source Code
 Revision 0.1

March 2018

RTips Technologies

Modbus Master Protocol Library - User Manual Page 2

Table of Contents
1 Architecture ... 4

1.1 MMPL Block Schematic .. 4

1.2 Directory Structure ... 4

1.3 Files ... 5

1.4 Hooks and Macros ... 5

2 Porting .. 5

2.1 Add a source code to your project ... 6

2.2 Set Endian Architecture.. 7

2.2.1 More about Endianness ... 7

2.3 Select Modbus framing type (RTU or TCP) ... 7

2.4 Glue MMPL to device interface ... 8

2.5 Glue MMPL-C to application and database ... 8

2.5.1 Using the Data Formatter to map ‘C’ data types to Modbus ... 9

2.6 Configure diagnostics ... 10

2.6.1 Step-1: Select debugger level ... 10

2.6.2 Step-2: Include or exclude Formatted I/O support .. 11

2.6.3 Step-3: Implement the debug "sink" ... 11

2.7 Optimise MMPL-C ... 11

2.7.1 Set optimal buffer sizes ... 11

2.7.2 Include only the function you require ... 12

2.7.3 Reduce Code Memory size by configuring CRC macros (Modbus RTU only) 13

2.7.4 Reduce Data Memory (RAM) size by configuring CRC macros .. 13

3 Making calls into MMPL-C APIs .. 13

3.1 Flowchart for MMPL-C API invocation ... 14

4 MMPL-C Reference .. 15

4.1 MMPL-C Data Types .. 15

4.2 MMPL-C Function Reference.. 16

4.2.1 MMPL_OpenPort ... 16

4.2.2 MMPL_ClosePort ... 16

4.2.3 MMPL_ReadPort.. 17

4.2.4 MMPL_WritePort .. 18

4.2.5 MMPL_DebugPrint ... 18

4.2.6 MMPL_SendRequest ... 19

4.2.7 MMPL_RecvAndProcessResp .. 19

4.2.8 DoModbusTransaction ... 20

RTips Technologies

Modbus Master Protocol Library - User Manual Page 3

4.2.9 Status codes returned by

function DoModbusTransaction, MMPL_SendRequest and MMPL_RecvAndProcessResp 21

4.3 Macro Reference ... 22

4.3.1 MODBUS_MODE .. 22

4.3.2 ENDIAN_STYLE .. 22

4.3.3 RD_BLK_SIZE_BITINFO .. 23

4.3.4 RD_BLK_SIZE_REGINFO... 23

4.3.5 WR_BLK_SIZE_BITINFO ... 23

4.3.6 WR_BLK_SIZE_REGINFO ... 24

4.3.7 RX_BUFFER_SIZE and TX_BUFFER_SIZE .. 24

4.3.8 STDIO_SUPPORTED .. 25

4.3.9 DEBUG_LEVEL.. 25

4.3.10 CRC_TABLE_LOCATION ... 26

4.3.11 CRC_TABLE_LOC_MODIFIER .. 26

4.3.12 xdata .. 26

RTips Technologies

Modbus Master Protocol Library - User Manual Page 4

1 Architecture

 Simplicity - to reduce code size
 Maximum portability - Strict compliance to ANSI 'C' standards
 Robust – only, static memory allocation
 Sparing use of code and memory
 Modular, scalable and configurable - easy to maintain
 Easy to debug

1.1 MMPL Block Schematic

Modbus Master Library: Components, Organization and Interconnections

Components of Library:

S.No. Module Functionality File Name

1 MMPL Core Frame Parsing

Packet Generation

Deploy Modbus Functions

Multi-level debugger

MMPL_C.c

2 Porting Layer Links source code library to physical device

and user application.

MMPL_UserIf.c

This file modified by user

1.2 Directory Structure

Folders within MMPL-C package:-

RTips Technologies

Modbus Master Protocol Library - User Manual Page 5

Folder Name Contents Remarks

Library Source files of MMPL-C The files in this folder have the user
definable hook functions left empty.

License license agreement for the version of

the library purchased

The license agreement has a unique license

number which must be used in all

correspondences with RTips Technologies

regarding this library.

Simple Slave

Simulator

Contains MSPL.exe You will use this utility to listen to Modbus

requests.

Ports Ports of MMPL-C to Win32 and any

other platform you requested.

The Win32 port can be found in

"Ports\Win32" folder. This port contains

project files to compile the source in MS

Visual Studio 2008. If you requested for any

other ports in addition to Win32, a relevant

folder will also be included.

1.3 Files

The Modbus Master Protocol Library contains the following 'C' source files:

File Type Filename Contents Engineer

Modifies ?

'C' Source MMPL_C.c Modbus communication protocol stack No

Main.c Defines the entry point for the application. Yes

MMPL_UserIf.c Platform dependent functions implemented by user

"stubs" to receive platform dependent code. Refer to

Win32 port for example.

Yes.

'C' header MMPL_C.h Header file for MMPL_C.c No

MMPL_Defs.h Colway Solutions type and symbol definitions for

maximum portability.

CSPL_U16

CSPL_U132

etc.

Yes. Review

and change for

specific target

MMPL_UserIf.h Default values for all parameters.

Refer to Win32 port for example

Yes. Extensive

modification to

complete port

Add MMPL files to your project
After creating your project in the IDE of your platform, you must add all the files above into this project and if required to

explicitly configure all the above source files to be included in the build process.

1.4 Hooks and Macros

Hooks:
 The porting of MMPL-C to a new platform is accomplished by means of defining hook functions.
 The hook functions are left unimplemented in the library
 Hook functions need to be implemented for porting the library

Macros:
 'C' macros created using #define pre-processor statement
 Control conditional inclusion or exclusion of portions of the library code
 Define values for configuration parameters

2 Porting
The following steps are required to port the Modbus Master Protocol Library to your hardware and software
environment.

http://www.colwaysolutions.com/mmpl-c/Files.html
http://www.colwaysolutions.com/mmpl-c/hooks¯os.html

RTips Technologies

Modbus Master Protocol Library - User Manual Page 6

Step 1. Add MMPL-C files to your project

Step 2. Define the Endian Architecture of your platform

Step 3. Select, Modbus framing type (RTU or TCP)

Step 4. Glue MMPL-C to the physical interface of your platform

Step 5. Glue MMPL-C to the your application's database

Step 6. Configure diagnostics

Step 7. Optimize MMPL-C

Step 8. Build and test your port with the supplied Simulator

2.1 Add a source code to your project
The first step in using MMPL-C is to add its source files to your project. The procedure for this step differs from one
compiler or IDE to another. The following section describes this procedure with relevant screen shots for the
Silicon Laboratories IDE. Procedure for other IDE's will be similar.

i.

Create a new group called "MMPL" by right-clicking on the project name and choosing "Add Groups to project
<proj name>" as shown below. Note that this step is optional.

ii. Right-click the mouse on the MMPL group created above. If the above step was skipped, right-click on any
other group to which you intend to add MMPL-C files. Click on item "Add file to group <group name>". A File
Open dialog box appears.

iii.

Browse to the folder containing the MMPL-C files and select all .c files. Click "Open".

iv. Press and hold the CTRL key and select all .c MMPL files. Right-click and choose "Add to build". This step is
necessary to include the MMPL-C files in the compilation and build process.

RTips Technologies

Modbus Master Protocol Library - User Manual Page 7

2.2 Set Endian Architecture

Modbus follows the Big Endian byte ordering system. Therefore the byte ordering has to be reversed if the Modbus
library is deployed on a Little Endian processor. The library has a macro ENDIAN_STYLE, used to set the correct
Endian characteristic.

Steps

a) Open file MMPL_UserIf.h
b) Locate the definition of macro ENDIAN_STYLE
c) If your platform is Little Endian, change the above macro's value to LITTLE_ENDIAN. If it is Big Endian,

change the macro's value to BIG_ENDIAN. The modified line should look like this:
#define ENDIAN_STYLE LITTLE_ENDIAN/* for Little Endian */

#define ENDIAN_STYLE BIG_ENDIAN/* for Big Endian */
d) Rebuild your project and test.

Notes

 The utility functions provided by the Formatter (e.g. MMPL_ShortIntsToBuffer) are "Endian-aware" -
 they are programmed check and ensure that transfers from
 interpreted data types of raw buffers conform to Endianess of the platform.

 If you use your own code for such transfers, remember to address the issue of Endianess. Raw data in a
 Modbus packet are always in Big Endian format.

 To know the Endianess of your platform, refer to the User Manual of your processor.
 If you are unsure of the Endianess of your platform, a simple technique to determine this is to create a

 'C' program with an unsigned short int variable (16-bit)
 And store the value 0xABCD in it:

unsigned short int testVar = 0xABCD;
Then debug this program and see the memory contents (using a Memory Dump or Memory Watch
window) at the location of this variable. If you find 0xAB stored first and then 0xCD, you have a Big Endian
system, else you have a Small Endian system.

2.2.1 More about Endianness

Endianness is the byte (and sometimes bit) ordering used to represent some kind of data.
Also referred to as byte order.

For example a 'C' variable of data type float consists of four bytes. There are variations in a storage sequence of
these four bytes among different systems.

Endianness is crucial in communication systems implementation. Need to ensure that data reaches destination in
the correct byte order.

Two most commonly used byte ordering systems are:

 Big Endian. Most significant byte of data unit is stored first in memory followed by the rest in descending order
of significance. Motorola 68000 and PowerPC are examples of
processors that adopt Big Endian byte ordering.
 Little Endian. The least significant byte of data unit is stored first in memory followed by the rest in ascending
order of significance. Examples of such processors are Intel x86 and
Z80.

Note: Most modern computer processors agree on bit ordering inside individual bytes. The library therefore has no
provision for manipulating bit ordering.

2.3 Select Modbus framing type (RTU or TCP)

The library supports two modes of Modbus communication, Modbus RTU and Modbus TCP. This can be set at
compile time by setting the value of the MODBUS_MODE macro.

Steps

a) Open file MMPL_UserIf.h
b) Locate the definition of macro MODBUS_MODE
c) To configure the library to run in Modbus TCP mode, change the above macro's value to MODBUS_TCP. To

set it to Modbus RTU mode, change the macro's value to MODBUS_RTU. The modified line should look like
this:

#define MODBUS_MODE MODBUS_TCP /* for TCP communications */
#define MODBUS_MODE MODBUS_RTU /* for RTU communications */

d) Rebuild your project and test.

RTips Technologies

Modbus Master Protocol Library - User Manual Page 8

Notes
 Since this is a compile time setting, the mode cannot be changed dynamically at run time.
 Only one Modbus mode can be enabled at a time.

2.4 Glue MMPL to device interface
A communication channel has to be set up between physical device and the Modbus library in order to

receive Modbus request packets and transmit response packets.
The Modbus standard provides allows users to choose their own communication channel. Modbus compliant
software is therefore unaware of the characteristics of particular communication channels.
Therefore the library provides a set of unimplemented (i.e. empty) hook functions that can be glued to the real
interface functions of your communication channel.
The hook functions cover the four communication operations.

S.No. Channel

Operation

Hook Function Porting Notes

1 Open Port MMPL_OpenPort i. Use this function to open and configure communication channel
 ii. User application must call this function once for every channel

supported by the device
 iii. A unique channel identification number is passed as an argument

to this function.
 iv. Device driver API usually returns a path identifier or handle to the

channel being opened. This is required in subsequent operations:
read, write and close. Please ensure that your program stores this
identifier. See Win32 port implementation as an example.

2 Read from

channel

MMPL_ReadPort i. Library calls this function to read data from communication channel
 ii. Function typically calls device driver's "Read" API
 iii. A unique channel number is passed as an argument to identify the

channel.
 iv. Caution: Blocking calls to device driver API's in this function will

block execution of MMPL-C as well as the application code that is
calling the library.

3. Write to

channel

MMPL_WritePort i. Library calls this function to transmit data on communication
channel

 ii. Function typically calls device driver's "Write" API
 iii. A unique channel number is passed as an argument to identify the

channel.
 iv. Caution: Blocking calls to device driver API's in this function will

block execution of MMPL-C as well as the application code that is
calling the library.

4. Close Port MMPL_ClosePort i. Use this function to close communication channel
 ii. User application calls this function when no Modbus

communication is required
 iii. A unique channel number is passed as an argument to identify the

channel.

2.5 Glue MMPL-C to application and database

Glue library to Application

The library handles the task of framing and de-framing Modbus messages. The data within the messages are

supplied by respective application programs. The library encapsulates this data as per Modbus framing rules and

transmits it to the recipient.

Using the functions Read Coil and Write Coil to illustrate.

RTips Technologies

Modbus Master Protocol Library - User Manual Page 9

 Read Coil: In response to the Read Coil command, the application program running on the slave will supply data

to the library. The library will frame the data in accordance to Modbus framing rules and send it to the master,

completing the transaction.

 Write Coil: The application running on the master supplies the data to the library. The library encapsulates the

data in the right frames and forwards the framed message to the slave program, which executes the command.

One function in the Main.c file facilitate the interface between the library and your application and database.

 DoModbusTransaction: Called by MMPL-C that drives Modbus communication on a network.

This function present a well defined interface that is fully documented in this manual.

Please refer to sample Win32 port for a complete reference.

Glue library to Simulated Database

A simulated database forms part of the library supplied. It has a few variables of all the data types supported by
the library.
Use this database as a first step to get the library working on your platform. This exercise will assist in integrating
the library with the application's database.

The database is created at the beginning of the Main.c file and contains the following data elements:
S.No. Data Element Associated Modbus

Data Type

Number

of Arrays

Memory Address

1 CSPL_U8 (single byte) Coils, Discrete

Inputs

2 0000 to 0015 (16 items)

2 CSPL_U16 (two byte) Holding and Input

Registers

2 0000 to 0010 (10 items)

The interface functions in the Main.c file operate upon this simulated database.

After testing with this database, you may replace it with your own. Modify the interface functions to operate on

your database.

2.5.1 Using the Data Formatter to map ‘C’ data types to Modbus

MMPL-C provides you an extension to the Modbus specifications by supplying a set of functions in
file MMPL_C.c that map the low level Modbus types (bits and words) to high level 'C' data types (floats, integers
and strings) with due consideration to the ENDIAN format of your platform.

There are two categories of functions:
 Functions that convert an array of raw data bytes as received via Modbus to an array of higher level 'C' data

type. They are usually called in DecodeResponse to interpret the raw Modbus data as per the corresponding
higher level 'C' datatype of the user database.

 Functions that convert an array of some higher level 'C' data type into an array of raw data bytes that can be
transmitted via Modbus. They are usually called in ConstrucRequest toprovide the library with user data in a
Modbus compliant format.

Following is a brief description of each function:

Function name Description

MMPL_PackBits This method bit-packs the destination buffer with bit status information from the source

buffer. The source buffer is expected to contain bit status (i.e a value of 0 or 1) information in

one byte per bit. This data is bit-packed as 8-bits per byte in the destination buffer.

MMPL_UnPackBits This method unpacks the bits from the source buffer (which has data bit-packed as 8-bits per

byte) and puts the bit status information (i.e a value of 0 or 1) into the destination buffer (in

one byte per bit).

MMPL_ShortIntsToBuffer This method puts data into the destination buffer in such a way that a pair of bytes of the

destination buffer is used to hold the value of one two-byte register (source buffer).

RTips Technologies

Modbus Master Protocol Library - User Manual Page 10

MMPL_BufferToShortInts This method puts data into the destination buffer in such a way that a pair of bytes of the

source buffer is used to form the value of one two-byte register.

2.6 Configure diagnostics
MMPL-C has embedded debugging code to printout out useful information to enable users to analyse, debug and
diagnose the function of the library. Such code can be enabled only during initial development and disabled later
to save code space as well as to decrease the CPU utilisation of the library.
The type of debugging statements output by the library also controlled at four levels as discussed in section 2.6.1
All diagnostics settings are done using 'C' macros making them configurable only at compile time and not at run
time. So configuring diagnostics can be done with the following steps:

Step-1: Select debugger level

Step-2: Include or exclude Formatted I/O support

Step-3: Implement the debug "sink"

2.6.1 Step-1: Select debugger level

Enabling the debugger and setting the debug level is done by defining a value for the DEBUG_LEVEL macro. This
macro is defined in MMPL_UserIf.h

e.g.

#define DEBUG_LEVEL DEBUG_ERROR

This macro can be assigned one of the following values:

Macro Value Description

DEBUG_NONE This value disables the debugger. No debugging statements are

output from the library. This is the value you will use once your

application has been fully tested and ready to be released.

DEBUG_ERROR This value causes the debugger to output statements when any error

occurs in the library. In a well tested application there should be very

few occurrences of "error debugger statements". In a way, it's a good

idea to set the debugger to this level during the initial period after a

release is done in order to capture errors that might occur post-

release.

DEBUG_WARNING This value causes the debugger to output relevant messages when

errors occur or when conditions occur that could potentially lead to

errors. An example of a warning is when the library receives a

Modbus request with the function code set to an unsupported value.

In this case the library outputs this message:

"Warning: Unsupported function code, sending exception response"

DEBUG_INFORMATION This value causes the debugger to output routine information that

indicates the overall status of the library and also shows the flow of

execution, in addition to error and warning messages. This is the

setting you will use in diagnosing any errors reported in the

application. For instance when the library receives a Modbus read

request for Coils, it outputs the following informational message:

"==> FC=0x01 (Read Coils) "

DEBUG_VERBOSE This value causes the debugger to output messages that can be used

for deep debugging. An example of such a message is when the

library outputs the value of each byte of the Modbus packet received

RTips Technologies

Modbus Master Protocol Library - User Manual Page 11

by it as well as that of the response. This setting is useful in

diagnosing difficult problems but at the same time generates an

overwhelming amount of messages that can get you lost.

2.6.2 Step-2: Include or exclude Formatted I/O support

If a function like sprintf that implements formatted I/O is supported on the platform, the library can make use of it
to create more meaningful debugging messages. For instance if a Modbus request with an unsupported function
code is received, the debug message will be formatted to contain the unsupported function code to make it easier
to debug the problem.
Support for formatted I/O can be configured by setting the macro STDIO_SUPPORTED to a value of '1'. This macro
is defined in MMPL_UserIf.h.

#define STDIO_SUPPORTED 1 // Enable formatted I/O support

2.6.3 Step-3: Implement the debug "sink"

The debugging messages output by the library have to be finally output to a physical device like a display, a
printer or a serial terminal etc. This output device is referred to as the debug sink. To provide the flexibility of
choosing the debug sink to the user, the library outputs its messages to a function called MMPL_DebugPrint. This
function is defined in MMPL_UserIf.c but is left unimplemented (i.e. an empty function). Users should implement
this function and sink the debug message passed as an argument to an appropriate device.
The format of this function is as below:

void MMPL_DebugPrint(* debugMessage)

Parameters:

 i. debugMessage (IN): A null-terminated 'C' string containing the debug message.
Shown below is a very simple implementation of this hook function that adds a time stamp to the debugger
message and prints it to the standard output device.

void MMPL_DebugPrint(char* debugMessage)

{

/* Add a time stamp to the debugger message & print it to the

standard output */

SYSTEMTIME st;

GetLocalTime(&st);

printf("%d:%d:%d.%03d - %s", st.wHour, st.wMinute, st.wSecond,

st.wMilliseconds, debugMessage);

}

2.7 Optimise MMPL-C

Design constrains change from one platform to another. While someone is constrained for Data Memory
(RAM) space, someone else is short of Code (Program) Memory (ROM/Flash) while yet another is short of both. In
order to accommodate MMPL within the design constraints of most users, we have provided mechanisms to save
RAM, ROM or both. The following sub sections describe the steps involved in using each of these techniques.

2.7.1 Set optimal buffer sizes

The library uses memory buffers to store incoming Modbus packets before decoding them and to store
response packets before transmitting them. The sizes of these two buffers can be controlled by limiting the
maximum number of Modbus data items (i.e. coils, registers etc.) that a master can request in one Modbus
transaction. For instance if a Modbus Master sends a read request for 100 registers in one packet, the resulting
response packet size will be greater than 200 bytes in comparison to a read request for just 10 registers. You can
configure the library to entertain requests that can fit into a specific buffer size by defining the following macros:

RTips Technologies

Modbus Master Protocol Library - User Manual Page 12

Macro Name Location Remarks

RX_BUFFER_SIZE MMPL_C.h Limits the size of incoming packets. If the incoming

request packet size cannot be accommodated in this

buffer size, the library outputs an "Error" debugger

message, discards the received packet and sends no

response to the master.

TX_BUFFER_SIZE MMPL_C.h Limits the size of outgoing packets.

Note: No check is made by the library to verify if a

Modbus request results in a response packet whose size

is larger than this size.

2.7.1.1 Modbus Block Size Macros

Modbus block size is the number of data items that a master zor operate upon in one Modbus transaction.
The size of a Modbus packet is limited to 256 bytes for Modbus RTU and 260 bytes for Modbus TCP. This in effect
itself limits the number of items that can be operated upon in one transaction as below:

Transaction Max permissible block size

Read Coils, Read Discrete Inputs 2000 coils and Discrete Inputs respectively

Read Holding Registers, Read Input

Registers

125 registers

Write Multiple Coils 1968 coils

Write Multiple Registers 123 registers

However, in order to receive and service Modbus transactions that stretch up to the above max
permissible limits, a device needs a transmit and a receive buffer of 256 bytes (260 in case of Modbus TCP). This
may not be available or necessary in small devices employing low end microcontrollers. MSPL provides a way of
using a lower buffer sizes and a set of macros which can be used to filter out Modbus transactions that exceed a
set limit for block size. They are:

 RD_BLK_SIZE_BITINFO

 WR_BLK_SIZE_BITINFO

 RD_BLK_SIZE_REGINFO

 WR_BLK_SIZE_REGINFO

These macros must be set along with RX_BUFFER_SIZE and TX_BUFFER_SIZE to optimize the use of
memory.

2.7.2 Include only the function you require

The code size occupied by the library can be minimized by including only the Modbus functions required in
your application and excluding others. For instance, if your device has only digital inputs, there is no use of
including support for Modbus function Read Holding Register.

2.7.2.1 How does the library respond to an unsupported function request

When the library receives a request for an unsupported Modbus function it responds with Modbus
Exception code 0x01 (ILLEGAL FUNCTION).

RTips Technologies

Modbus Master Protocol Library - User Manual Page 13

2.7.3 Reduce Code Memory size by configuring CRC macros (Modbus RTU only)

The amount of Code Memory (sometimes called Program Memory) used by the library can be reduced
using two technics.

Method: Move CRC tables into Data Memory (RAM)

Steps

a) Open file MMPL_UserIf.h
b) Locate the definition of macro CRC_TABLE_LOCATION
c) Change its value to IN_RAM. The modified line should look like this:

#define CRC_TABLE_LOCATION IN_RAM
d) Rebuild your project. You should see a reduction in code size by approximately 512 bytes and a
corresponding increase in RAM usage.

Description

Two tables of 256 constant values are used in computing CRC bytes. The location of these tables is
configurable. The above steps cause the tables to be stored in data memory. This saves code memory at the
expense of data memory by moving the tables into RAM. Since RAM is faster than ROM access, this method may
also improve the efficiency of code execution.

2.7.4 Reduce Data Memory (RAM) size by configuring CRC macros

The amount of Data Memory (sometimes called as RAM) used by the library can be reduced using two
techniques.

Method: Move CRC tables into Code Memory (ROM)

Steps

a) Open file MMPL_UserIf.h
b) Locate the definition of macro CRC_TABLE_LOCATION
c) Change its value to IN_ROM. The modified line should look like this:

#define CRC_TABLE_LOCATION IN_ROM
d) Rebuild your project. You should see a reduction in RAM usage but an increase in the code size.

Description

Two tables of 256 constant values are used in computing CRC bytes. The location of these tables is
configurable. The above steps cause the tables to be stored in code memory. This saves data memory (RAM) at
the expense of code memory (ROM) by moving the tables into ROM.

3 Making calls into MMPL-C APIs
Once you have ported the library to your platform, it is time to make calls into its API's. The following table

shows a list of API's that may be called by the user's application:

API When to call Mandatory? Remarks

DoModbusTransaction Periodically for every

channel, when there is

need to send

request/response

to/from the Modbus

Yes This is the main entry point into the
library, also called as the trigger
function.

 DoModbusTransaction is a blocking
call and does not return until a response

RTips Technologies

Modbus Master Protocol Library - User Manual Page 14

Slave . is received or a timeout occurs..

 If DoModbusTransaction is used, then
MMPL_ReadPort function in
MMPL_UserIf.c must implement a
timeout logic

MMPL_SendRequest/

MMPL_RecvAndProcessResp

(These functions do

what DoModbusTransaction single

handedly does)

Periodically for every

channel, when there is

need to send

request/response

to/from the Modbus

Slave .

Yes MMPL_SendRequest function
constructs and sends Modbus request

 MMPL_RecvAndProcessResp function
receives and processes slave response

 Unlike DoModbusTransastion, the call
does not get blocked waiting for slave to
respond

 MMPL_SendRequest();
DoAnyOtherAppTass()/* Call any other
application tasks*/
if(ResponseReceived){
MMPL_RecvAndProcessResp();
}

MMPL_OpenPort On program start up,

once for every

communication channel

to be opened and

initialised.

No (optional) The user is free to perform channel
initialisation outside of the library in
which case this function need not be
implemented and/or called.

MMPL_ClosePort Once per channel when

Modbus communication

is no longer required on

that channel.

No (optional) In applications where Modbus
communication is expected to be active
until the device is switched OFF, this
function need not be called at all.

 As for MMPL_OpenPort, user may
choose to implement channel de-
initialisation code outside the library in
which case this function need not be
implemented or called.

3.1 Flowchart for MMPL-C API invocation

Diagram below shows a flowchart of invocation of the MMPL_OpenPort function
and DoModbusTransaction function.

RTips Technologies

Modbus Master Protocol Library - User Manual Page 15

4 MMPL-C Reference

4.1 MMPL-C Data Types

These data types are defined in MMPL_Defs.h

MMPL-C Data type Native definition

CSPL_U8 unsigned char

CSPL_U16 unsigned short int

CSPL_U32 unsigned int

RTips Technologies

Modbus Master Protocol Library - User Manual Page 16

CSPL_I8 char

CSPL_I16 short int

CSPL_I32 int

CSPL_BOOL typedef enum _CSPL_BOOL

{

CSPL_FALSE,

CSPL_TRUE

}CSPL_BOOL;

4.2 MMPL-C Function Reference

4.2.1 MMPL_OpenPort

Function name MMPL_ OpenPort

Description This function should open communication port and initialize it so as to get it

ready for receiving Modbus packets and sending responses.

This is the place to set all communication parameters like baud rate, parity,

port timeouts etc. This function is not internally called by the library but must

be called by the user during start up of his application, once for each port

that will support Modbus communication.

Returns CSPL_U8. A value indicating if the specified port was opened and initialized

successfully or not.

Possible return

values

CSPL_TRUE - The specified port was opened and initialized successfully.

CSPL_FALSE - The specified port could not be opened or initialized.

Arguments CSPL_U8

networkNo

A number identifying the "port" or channel used for

Modbus communication that is to be initialized.

Called by User application

User

Implements?

Yes

4.2.2 MMPL_ClosePort

Function name MMPL_ ClosePort

Description The implementation of this function should close the specified port and

release all resources held by it. This function is not called directly by the

library. It must instead be called by the user of the library when Modbus

RTips Technologies

Modbus Master Protocol Library - User Manual Page 17

support on a communication port is no longer required.

Returns CSPL_U8. A value indicating success or failure of the function.

Possible return

values

CSPL_TRUE - The port was closed successfully.

CSPL_FALSE - The port could not be closed successfully.

Arguments CSPL_U8

networkNo

A number identifying the "port" or channel to be closed.

Called by User application

User

Implements?

Yes

4.2.3 MMPL_ReadPort

Function name MMPL_ ReadPort

Description This function is called by the library to read a Modbus packet from a communication port.

Returns CSPL_U8. A value indicating success or failure of the function.

Possible return

values

CSPL_TRUE - if the function is able to read at least one byte from the port before a read timeout

occurs. The actual number of bytes read should be stored in pNoOfBytesRead.

CSPL_FALSE - if the function is unable to read any byte from the port before a read timeout occurs

or if it encounters an error in reading the port. In this case an error code indicating the reason for

failure should be stored in pErrorCode argument.

Arguments CSPL_U8 networkNo A number identifying the "port" to be read.

CSPL_U16

noOfBytesToRead

The number of bytes to read on this port.

CSPL_U16

*pNoOfBytesRead

A pointer to the variable that receives the actual number of bytes read.

CSPL_U8 *pBuffer A pointer to the buffer that receives the data read from the port.

CSPL_U8 *pErrorCode A pointer to the variable that receives an error code in case of failure of

this function.

Called by Library

User Implements? Yes

RTips Technologies

Modbus Master Protocol Library - User Manual Page 18

4.2.4 MMPL_WritePort

Function name MMPL_ WritePort

Description This function is called by the library to write a Modbus response packet to a communication port.

Returns CSPL_U8. A value indicating success or failure of the function.

Possible return

values

CSPL_TRUE - if the function is able to write at least one byte to the port before a write timeout

occurs. The actual number of bytes written should be stored in pNoOfBytesWritten.

CSPL_FALSE - if the function is unable to write any byte to the port before a write timeout occurs or

if it encounters an error in writing to the port. In this case an error code indicating the reason for

failure should be stored in pErrorCode argument.

Arguments CSPL_U8 networkNo A number identifying the "port" to be read.

CSPL_U16

noOfBytesToWrite

The number of bytes to write to this port.

CSPL_U16

* pNoOfBytesWritten

A pointer to the variable that receives the actual number of bytes

written.

CSPL_U8 *pBuffer A pointer to the buffer containing the data to be written to the port.

CSPL_U8 *pErrorCode A pointer to the variable that receives an error code in case of failure

of this function.

Called by Library

User Implements? Yes

4.2.5 MMPL_DebugPrint

Function name MMPL_ DebugPrint

Description The library calls this function to output a debug message. Users may implement this function to

sink the debug message to an output device of their choice (e.g. to a printer, to an LCD, to a file and

so on.). This function is called only when debugging is enabled by way of macro DEBUG_LEVEL.

Returns None

Arguments

CSPL_CHAR*

debugMessage

A null-terminated 'C' string containing the debug message.

Called by Library

User Implements? Yes

RTips Technologies

Modbus Master Protocol Library - User Manual Page 19

4.2.6 MMPL_SendRequest

Function name MMPL_SendRequest

Description MMPL_SendRequest function constructs and sends Modbus request

Returns CSPL_U8. A status code as shown in section below titled "Status codes returned by

function MMPL_SendRequest"

Arguments MMPL_MB_REQ_ADU

*pMbReqAdu

Used to hold the Modbus request ADU to be sent to the slave.

MMPL_MB_RSP_ADU

*pMbRspAdu

Used to hold the Modbus response ADU received from the slave.

CSPL_U8 networkNo The channel on which this function must look for a Modbus packet. The

library passes this parameter to every hook function that it calls from

MSPL_UserIf.h. Since this function processes one channel at a time, it

must be called once for every channel configured for Modbus in your

system.

CSPL_U8 slaveNo A single byte value containing the slave ID of the device from which data

is being requested.

CSPL_U8 functionfode A single byte value of the Modbus function code that defines the

Modbus service request.

CSPL_U16 startAddress A two-byte value that is the first address in the range of data being

requested for.

CSPL_U16 numItems A two-byte value that is the number of data items starting from

startAddress that are being requested for.

CSPL_U8 *dataBuffer -> (OUT): Pointer to an array of bytes into which the requested data

must be copied into in the correct format for 'Read' FCs.

-> (IN): Pointer to an array of bytes containing the data that has to be

'written' to slave.

Called by User application

User Implements? No

4.2.7 MMPL_RecvAndProcessResp

Function name MMPL_RecvAndProcessResp

Description MMPL_RecvAndProcessResp function receives and processes slave response

Returns CSPL_U8. A status code as shown in section below titled "Status codes returned by

function MMPL_RecvAndProcessResp"

Arguments MMPL_MB_REQ_ADU Used to hold the Modbus request ADU to be sent to the slave.

RTips Technologies

Modbus Master Protocol Library - User Manual Page 20

*pMbReqAdu

MMPL_MB_RSP_ADU

*pMbRspAdu

Used to hold the Modbus response ADU received from the slave.

CSPL_U8 networkNo The channel on which this function must look for a Modbus packet. The

library passes this parameter to every hook function that it calls from

MSPL_UserIf.h. Since this function processes one channel at a time, it

must be called once for every channel configured for Modbus in your

system.

CSPL_U8 slaveNo A single byte value containing the slave ID of the device from which data

is being requested.

CSPL_U16 numItems A two-byte value that is the number of data items starting from

startAddress that are being requested for.

CSPL_U8 *dataBuffer -> (OUT): Pointer to an array of bytes into which the requested data

must be copied into in the correct format for 'Read' FCs.

-> (IN): Pointer to an array of bytes containing the data that has to be

'written' to slave.

Called by User application

User Implements? No

4.2.8 DoModbusTransaction

Function name DoModbusTransaction

Description This method is the main function that drives Modbus communication on a network.

Returns CSPL_U8. A status code as shown in section below titled "Status codes returned by

function DoModbusTransaction”

Arguments CSPL_U8 networkNo The channel on which this function must look for a Modbus packet. The

library passes this parameter to every hook function that it calls from

MSPL_UserIf.h. Since this function processes one channel at a time, it must

be called once for every channel configured for Modbus in your system.

CSPL_U8 slaveNo A single byte value containing the slave ID of the device from which data is

being requested.

CSPL_U8

functionfode

A single byte value of the Modbus function code that defines the Modbus

service request.

CSPL_U16

startAddress

A two-byte value that is the first address in the range of data being

requested for.

CSPL_U16 numItems A two-byte value that is the number of data items starting from startAddress

that are being requested for.

RTips Technologies

Modbus Master Protocol Library - User Manual Page 21

CSPL_U8 *dataBuffer -> (OUT): Pointer to an array of bytes into which the requested data must be

copied into in the correct format for 'Read' FCs.

-> (IN): Pointer to an array of bytes containing the data that has to be

'written' to slave.

CSPL_U8 numRetries The number of times to retry communication with slave.

Called by User application

User Implements? No

4.2.9 Status codes returned by

function DoModbusTransaction, MMPL_SendRequest and MMPL_RecvAndProcessResp

The following error codes may be returned by the main entry point function DoModbusTransaction,

MMPL_SendRequest and MMPL_RecvAndProcessResp. They are defined in MMPL_Defs.h

Error Code Remarks

MSPL_NO_ERROR 0x00 No error was encountered and the function executed successfully

UNKNOWN_ERROR 0x01 An unknown error occurred reading / writing to port. This indicates that

the underlying device driver API for read/write returned an unknown

code when invoked.

INVALID_HANDLE 0x02 An invalid handle or path ID was used to read from / write to the port.

INVALID_NETWORKNUM 0x03 An uninitialized network number was passed as a parameter. Indicates

that an attempt was made to use a channel that has not been initialized

with a call to MMPL_OpenPort().

READ_WRITE_FAIL 0x04 Device failure reading / writing to port. Indicates that the underlying

device driver API for read/write returned an error code.

READ_WRITE_TIMEOUT 0x05 Timeout occurred reading / writing bytes. Indicates that the library

called MMPL_ReadPort which returned with no data but a timeout.

ID_MISMATCH 0x06 The slave ID found in the Modbus request does not match this device.

Indicates that the library encountered a message that was directed to a

different slave. In case of Modbus RTU, this could occur frequently

when using a shared bus like RS485 whereas in case of Modbus TCP,

this error code indicates a true errpr.

CRC_ERR 0x07 The message contained incorrect CRC Bytes. Indicates a corrupt

message. Modbus RTU only.

BUFFER_TOO_SMALL 0x08 The request message has more bytes than the available size of buffer.

Indicates that the master is trying to read or write too many Modbus

data units that the block sizes configured for the library.

PORT_CLOSED 0x09 The communication port was closed when trying to read or write on it.

This error commonly occurs when a TCP connection is closed just when

RTips Technologies

Modbus Master Protocol Library - User Manual Page 22

Error Code Remarks

the library was trying to read from the channel.

INVALID_FC 0x0A An invalid/unsupported function code was requested to be serviced.

TXID_MISMATCH 0x0B The Transaction ID of the Modbus request does not match the

response's Transaction ID.

INVALID_PROTCODE 0x0C Invalid Protocol code in the response.

EXCEPTION_RESPONSE 0x0D Exception response from slave.

FC_MISMATCH 0x0E The function code of the Modbus request does not match the

response's function code.

INVALID_BYTECNT 0x0F Invalid Byte count in the response.

INVALID_DATA_VALUE 0x10 Invalid Data Value.

INVALID_PKTLEN 0x12 Invalid Packet Length in the response.

INVALID_SLAVE_ADDR 0x13 Invalid Slave ID.

INVALID_NUM_ITEMS 0x14 Invalid number of items.

4.3 Macro Reference

4.3.1 MODBUS_MODE

Macro name MODBUS_MODE

Description Controls the Modbus framing type followed by the library.

Permitted

Values

MODBUS_TCP Sets framing type to Modbus TCP

MODBUS_RTU Sets framing type to Modbus RTU

Remarks Two framing types are supported by the library - Modbus RTU and
Modbus TCP.

4.3.2 ENDIAN_STYLE

Macro name ENDIAN_STYLE

Description Defines the Endian style of the processor running the library.

Permitted LITTLE_ENDIAN Processor is of type Little Endian

http://www.colwaysolutions.com/mmpl-c/macro-reference.html

RTips Technologies

Modbus Master Protocol Library - User Manual Page 23

Values BIG_ENDIAN Processor is of type Big Endian

Remarks Since Modbus is Big Endian, appropriate conversion logic is required when

the library is run on a Little Endian processor. The library uses this macro to

run such conversion logic conditionally wherever required.

4.3.3 RD_BLK_SIZE_BITINFO

Macro name RD_BLK_SIZE_BITINFO

Description Fixes the maximum limit to the number of bit status information (both coils

and discrete inputs) that may be requested by a Master in one Modbus

transaction.

Permitted

Values

8 to 2000

Remarks A smaller block size limit will enable setting a smaller value for
macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus response packets.

 If a Read Coils or Read Discrete Inputs request is received with the
number of items set to more than RD_BLK_SIZE_BITINFO, the
library responds with an ILLEGAL DATA ADDRESS (0x03)
exception code.

4.3.4 RD_BLK_SIZE_REGINFO

Macro name RD_BLK_SIZE_REGINFO

Description Fixes the maximum limit to the number of register values (both holding

registers and input registers) that may be requested by a Master in one

Modbus transaction.

Permitted

Values

1 to 125

Remarks A smaller block size limit will enable setting a smaller value for
macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus response packets.

 If a Read Holding Registers or Read Input Registers request is
received with the number of items set to more than
RD_BLK_SIZE_REGINFO, the library responds with an ILLEGAL
DATA ADDRESS (0x03) exception code.

4.3.5 WR_BLK_SIZE_BITINFO

Macro name WR_BLK_SIZE_BITINFO

Description Fixes the maximum limit to the number of coils that may be written to by a

Master in one Modbus transaction.

Permitted

Values

8 to 1968

RTips Technologies

Modbus Master Protocol Library - User Manual Page 24

Remarks A smaller block size limit will enable setting a smaller value for
macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus request packets.

 If a Write Multiple Coils request is received with the number of items
set to more than WR_BLK_SIZE_BITINFO, the library responds with
an ILLEGAL DATA ADDRESS (0x03) exception code.

4.3.6 WR_BLK_SIZE_REGINFO

Macro name WR_BLK_SIZE_REGINFO

Description Fixes the maximum limit to the number of holding registers that may

be written to by a Master in one Modbus transaction. A smaller block size

limit will enable setting a smaller value for macro RX_BUFFER_SIZE thus

reducing the memory used by the library for holding Modbus request

packets.

Permitted

Values

1 to 123

Remarks A smaller block size limit will enable setting a smaller value for
macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus request packets.

 If a Write Multiple Registers request is received with the number of
items set to more than WR_BLK_SIZE_REGINFO, the library
responds with an ILLEGAL DATA ADDRESS (0x03) exception code.

4.3.7 RX_BUFFER_SIZE and TX_BUFFER_SIZE

Macro name RX_BUFFER_SIZE

TX_BUFFER_SIZE

Description These macros control the sizes of receive and transmit buffers that the library

allocates for receiving Modbus requests and sending responses.

Permitted

Values

7 - 256 Modbus RTU

11 - 260 Modbus TCP

Remarks RX_BUFFER_SIZE must be set large enough for the library to
support the block size limits specified by WR_BLK_SIZE_BITINFO
and WR_BLK_SIZE_REGINFO.

 TX_BUFFER_SIZE must be set large enough for the library to
support the block size limits specified by RD_BLK_SIZE_BITINFO
and RD_BLK_SIZE_REGINFO.

 The recommended way to set these macros is by using the MMPL
configurator which automatically calculates the values for the buffers
based on the values set for the block size limiting macros.

 If these macros are manually set, ensure that the buffers are large
enough to hold the MBAP header (Modbus TCP only) or the
Slave/Server Address (Modbus RTU only), the Modbus PDU and the
CRC bytes (Modbus RTU only)

RTips Technologies

Modbus Master Protocol Library - User Manual Page 25

4.3.8 STDIO_SUPPORTED

Macro name STDIO_SUPPORTED

Description Indicates to the library if the platform supports formatted I/O or not.

Permitted

Values

1 Formatted I/O supported

0 Formatted I/O not supported

Remarks This macro is used by the library when creating debug messages.

 If the value for this macro is 1, the library formats debug messages
with relevant numerical information by using sprint formatted I/O
function. If not, the debug messages are plain textual information
only.

4.3.9 DEBUG_LEVEL

Macro name DEBUG_LEVEL

Description This macro is used to enable or disable output of debugging messages by the

library and to set the type of instances for which a debug message is

generated.

Permitted

Values

DEBUG_NONE Debug message generation is disabled.

DEBUG_ERROR Debug messages are generated only when error

conditions occur in the library execution.

DEBUG_WARNING Debug messages are generated only when error

conditions or such other conditions occur in the

library execution that could lead to potential error

conditions.

DEBUG_INFORMATION In addition to generating debug messages under

error and warning conditions messages are

generated that provide a general status indication

of the execution of the stack.

DEBUG_VERBOSE This setting is a superset of the above three

settings. In addition to debug messages for all the

above conditions, extensive messages are printed

out with as much information for the user as

would be required for deep debugging.

Remarks As the debug level increases from DEBUG_NONE to
DEBUG_VERBOSE, the code memory occupied by the library as
well as the CPU utilisation by it increase.

 It is recommended to set the level to DEBUG_ERROR in the
release version of your product. This will help catch errors in the
field.

RTips Technologies

Modbus Master Protocol Library - User Manual Page 26

4.3.10 CRC_TABLE_LOCATION

Macro name CRC_TABLE_LOCATION

Description This macro is used to control the manner in which the CRC tables are created

and stored in the library thereby optimising the use of code and data

memory.

Permitted

Values

IN_RAM CRC tables are created once at the start of the

program and stored in data memory (RAM).

IN_ROM CRC tables are stored in code memory (ROM) as

a const array.

Remarks This macro is used only in MODBUS RTU mode.

 The CREATE_DYNAMIC setting saves both data and code
memory at the cost of lower performance during runtime since the
CRC tables have to be created for every Modbus packet received.

 The IN_RAM setting saves ROM (code memory) at the cost of
using more data memory. Access to the CRC tables could be faster
since RAM access is faster than ROM access.

 The IN_ROM setting saves RAM (data memory) at the cost of
using more code memory.

4.3.11 CRC_TABLE_LOC_MODIFIER

Macro name CRC_TABLE_LOC_MODIFIER

Description This macro is used to set the keyword that will cause variables in code

memory (ROM) or RAM.

Permitted

Values

static xdata Set value such that the table goes into RAM.

code Set value such that the table goes into ROM/Flash.

Remarks Many compilers by default may store constant variables in code
memory. If so, set this macro to a blank.

4.3.12 xdata

Macro name xdata

Description This macro is used to set the keyword that will cause variables to be placed in

external memory.

Permitted

Values

The keyword used for forcing constant variables into code memory. E.g. the

keyword 'xdata'

Remarks Microcontrollers have internal RAM (sometimes in the form of on-
chip registers) and external RAM (also on-chip but not a part of the

RTips Technologies

Modbus Master Protocol Library - User Manual Page 27

MCU core). This keyword is used to force program variables to be
placed in the external RAM.

 The location of program variables also depends on the memory
model of setting of the compiler. For instance a large memory model
could by default place all program variables in external ram in which
case this macro setting becomes irrelevant.

 The library uses this macro to modify the location of transmit buffer
and the receive buffer since they form the major component of
memory usage by the library. All other variables used in the library
are placed in the default memory type defined by the memory model
setting.

	1 Architecture
	1.1 MMPL Block Schematic
	1.2 Directory Structure
	1.3 Files
	1.4 Hooks and Macros

	2 Porting
	2.1 Add a source code to your project
	2.2 Set Endian Architecture
	2.2.1 More about Endianness

	2.3 Select Modbus framing type (RTU or TCP)
	2.4 Glue MMPL to device interface
	2.5 Glue MMPL-C to application and database
	2.5.1 Using the Data Formatter to map ‘C’ data types to Modbus

	2.6 Configure diagnostics
	2.6.1 Step-1: Select debugger level
	2.6.2 Step-2: Include or exclude Formatted I/O support
	2.6.3 Step-3: Implement the debug "sink"

	2.7 Optimise MMPL-C
	2.7.1 Set optimal buffer sizes
	2.7.1.1 Modbus Block Size Macros

	2.7.2 Include only the function you require
	2.7.2.1 How does the library respond to an unsupported function request

	2.7.3 Reduce Code Memory size by configuring CRC macros (Modbus RTU only)
	2.7.4 Reduce Data Memory (RAM) size by configuring CRC macros

	3 Making calls into MMPL-C APIs
	3.1 Flowchart for MMPL-C API invocation

	4 MMPL-C Reference
	4.1 MMPL-C Data Types
	4.2 MMPL-C Function Reference
	4.2.1 MMPL_OpenPort
	4.2.2 MMPL_ClosePort
	4.2.3 MMPL_ReadPort
	4.2.4 MMPL_WritePort
	4.2.5 MMPL_DebugPrint
	4.2.6 MMPL_SendRequest
	4.2.7 MMPL_RecvAndProcessResp
	4.2.8 DoModbusTransaction
	4.2.9 Status codes returned by function DoModbusTransaction, MMPL_SendRequest and MMPL_RecvAndProcessResp

	4.3 Macro Reference
	4.3.1 MODBUS_MODE
	4.3.2 ENDIAN_STYLE
	4.3.3 RD_BLK_SIZE_BITINFO
	4.3.4 RD_BLK_SIZE_REGINFO
	4.3.5 WR_BLK_SIZE_BITINFO
	4.3.6 WR_BLK_SIZE_REGINFO
	4.3.7 RX_BUFFER_SIZE and TX_BUFFER_SIZE
	4.3.8 STDIO_SUPPORTED
	4.3.9 DEBUG_LEVEL
	4.3.10 CRC_TABLE_LOCATION
	4.3.11 CRC_TABLE_LOC_MODIFIER
	4.3.12 xdata

