
RTips Technologies

User Manual - Modbus Slave Protocol Library Page 1

 Modbus Slave (RTU and TCP)
Protocol Library

User Manual

Revision 0.1
March 2018

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 2

Table of Contents
1 Architecture .. 4

1.1 MSPL Block Schematic .. 4

1.2 Directory Structure .. 5

1.3 Files .. 5

1.4 Hooks and Macros .. 6

2 Porting ... 6

2.1 Add source code to your project .. 6

2.2 Set Endian Architecture ... 7

2.2.1 More about Endianness .. 8

2.3 Select Modbus framing type (RTU or TCP) .. 8

2.4 Glue MSPL to device interface .. 8

2.4.1 Supporting Modbus communication on multiple channels ... 9

2.4.2 Supporting multiple Modbus TCP connections in MSPL-C .. 9

2.5 Glue MSPL-C to application and database .. 10

2.5.1 Glue library to Application ... 10

2.5.2 Glue library to simulated Database ... 10

2.5.3 Using the Data Formatter to map ‘C’ data types to Modbus .. 11

2.6 Configure diagnostics ... 12

2.6.1 Step-1: Select debugger level ... 12

2.6.2 Step-2: Include or exclude Formatted I/O support .. 13

2.6.3 Step-3: Implement the debug “sink” ... 13

2.7 Optimise MSPL-C .. 14

2.7.1 Set optimal buffer sizes ... 14

2.7.2 Enable only the function codes you require... 15

2.7.3 Reduce Code Memory size by excluding support for message counters 15

2.7.4 Reduce Code Memory size by configuring CRC macros (Modbus RTU only) 15

2.7.5 Reduce Data Memory (RAM) size by configuring CRC macros .. 16

2.8 Build and test your port with the supplied Modbus Protocol Tester ... 16

2.8.1 Modbus Protocol Tester - Overview ... 16

2.8.2 Installing Modbus Protocol Tester .. 16

2.8.3 Help on using Modbus Protocol Tester .. 17

3 Making calls into MSPL-C APIs .. 17

3.1 Flowchart for MSPL-C API invocation ... 18

4 MSPL-C Configurator for easy configuration of the library ... 19

4.1 How to use the MSPL-C Configurator ... 19

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 3

4.2 MSPL-C Configurator Settings .. 20

5 Using MSPL-C in a multitasking environment .. 21

6 MSPL-C Reference .. 21

6.1 MSPL-C Data Types .. 21

6.2 MSPL-C Function Reference .. 22

6.2.1 MSPL_UserInit ... 22

6.2.2 MSPL_UserDeInit .. 22

6.2.3 MSPL_OpenPort .. 22

6.2.4 MSPL_ClosePort ... 23

6.2.5 MSPL_CheckSlaveId .. 23

6.2.6 MSPL_ValidateAddresses .. 23

6.2.7 MSPL_ReadUserData ... 24

6.2.8 MSPL_WriteUserData ... 25

6.2.9 MSPL_ReadPort .. 26

6.2.10 MSPL_WritePort .. 26

6.2.12 MSPL_RunModbus.. 27

6.2.13 Status codes returned by function MSPL_RunModbus... 28

6.2.14 MSPL_GetMessageCounters ... 28

6.3 Macro Reference .. 29

6.3.1 MODBUS_MODE .. 29

6.3.2 ENDIAN_STYLE ... 29

6.3.3 Macros for exclusion of unsupported Modbus functions .. 29

6.3.4 INCLUDE_MSG_CTRS ... 30

6.3.5 RD_BLK_SIZE_BITINFO .. 30

6.3.6 RD_BLK_SIZE_REGINFO ... 30

6.3.7 WR_BLK_SIZE_BITINFO ... 30

6.3.9 RX_BUFFER_SIZE and TX_BUFFER_SIZE .. 31

6.3.10 STDIO_SUPPORTED ... 31

6.3.11 FORMATTED_STRING_PRINT ... 32

6.3.12 DEBUG_LEVEL ... 32

6.3.13 DEBUG_COLSIZE ... 32

6.3.14 CRC_TABLE_LOCATION .. 33

6.3.15 CRC_TABLE_LOC_MODIFIER ... 33

6.3.16 DATA_IN_XRAM ... 33

6.3.17 MAX_NETWORKS .. 34

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 4

1 Architecture

Key architectural principles:-

 Simplicity – to reduce code size

 Maximum portability - Strict compliance to ANSI ‘C’ standards

 Robust - only static memory allocation

 Sparing use of code and memory

 Modular, scalable and configurable – easy to maintain

 Easy to debug

1.1 MSPL Block Schematic
Modbus Slave Library: components, organization, and interconnections.

Components of the library:

S.No. Module Functionality File Name

1 MSPL Core Frame Parsing
Packet Generation
Deploy Modbus Functions
Multi-level debugger

MSPC_C.c

2 Formatter Data formatter. Modbus data types
converted to:-
Short Integer
Integer
Float
String

CSPL_Utils.c

3 Porting
Module

Links source code library to physical device
and user application.

MSPL_UserIF.c
This file modified by user

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 5

1.2 Directory Structure
Folders within MSPL-C package:-

Folder Name Contents Remarks

Configurator MSPL-C Configurator GUI based MSPL-C Configurator to set
parameters such as buffer size, Endian
type

Documents MSPL-C User’s Manual

Library Source files of MSPL-C The files in this folder have the user
definable hook functions left empty.

License license agreement for the version
of the library purchased

The license agreement has a unique
license number which must be used in
all correspondences with RTips
Technologies regarding this library.

MPT Installer for Modbus Protocol
Tester

You will use this utility to test your port
of the MSPL-C. See section 2.9 for more
on MPT.

Ports Ports of MSPL-C to Win32 and
any other platform you
requested.

The Win32 port can be found in
“Ports\Win32” folder. This port contains
project files to compile the source in MS
Visual Studio 2008. If you requested for
any other ports in addition to Win32, a
relevant folder will also be included.

1.3 Files
The Modbus Slave Protocol Library contains the following ‘C’ source files:

File Type Filename Contents Engineer
Modifies ?

‘C’ Source MSPL_C.c Modbus communication protocol stack No

CSPL_Utils.c Library utility functions. Used by application
too.
Formatter

No

MSPL_UserIf.c Platform dependent functions implemented
by user “stubs” to receive platform dependent
code. Refer to Win32 port for example.

Yes.

‘C’ header MSPL_C.h Header file for MSPL_C.c No

CSPL_Utils.h Header file for CSPL_Utils.c No

CSPL_MbDefs.h RTips Technologies type and symbol
definitions for maximum portability.
CSPL_U16
CSPL_U132
etc.

Yes. Review
and change
for specific
target

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 6

MSPL_UserIf.h Default values for all parameters.
Refer to Win32 port for example

Yes. Extensive
modification
to complete
port

Add MSPL files to your project
After creating your project in the IDE of your platform, you must add all the files above into this project and if
required explicitly configure all the above source files to be included in the build process.

1.4 Hooks and Macros
Hooks

 The porting of MSPL-C to a new platform is accomplished by means of defining hook functions.

 The hook functions are left unimplemented in the library

 Hook functions need to be implemented for porting the library

Macros

 ‘C’ macros created using #define pre-processor statement

 Control conditional inclusion or exclusion of portions of the library code

 Define values for configuration parameters

2 Porting

The following steps are required to port the Modbus Slave Protocol Library to your hardware and software
environment.

Step 1. Add MSPL-C files to your project

Step 2. Define the Endian Architecture of your platform

Step 3. Select Modbus framing type (RTU or TCP)

Step 4. Glue MSPL-C to the physical interface of your platform

Step 5. Glue MSPL-C to the your application’s database

Step 6. Configure diagnostics

Step 7. Optimise MSPL-C

Step 8. Build and test your port with the supplied Tester

2.1 Add source code to your project
The first step in using MSPL-C is to add its source files to your project. The procedure for this step differs from one
compiler or IDE to other. The following section describes this procedure with relevant screen shots for the Silicon
Laboratories IDE. Procedure for other IDE’s will be similar.

i.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 7

Create a new group called “MSPL” by right-clicking on the project name and choosing “Add Groups to project <proj
name>” as shown below. Note that this step is optional.

ii. Right-click the mouse on the MSPL group created above. If the above step was skipped, right-click on any other

group to which you intend to add MSPL-C files. Click on item “Add file to group <group name>”. A File Open
dialog box appears.

iii.

Browse to the folder containing the MSPL-C files and select all .c files. Click “Open”.

iv. Press and hold the CTRL key and select all .c MSPL files. Right-click and choose “Add to build”. This step is
necessary to include the MSPL-C files in the compilation and build process.

2.2 Set Endian Architecture
Modbus follows the Big Endian byte ordering system. Therefore the byte ordering has to be reversed if the Modbus
library is deployed on a Little Endian processor. The library has a macro ENDIAN_STYLE, used to set the correct
Endian characteristic.

Steps

a) Open file MSPL_UserIf.h
b) Locate the definition of macro ENDIAN_STYLE
c) If your platform is Little Endian, change the above macro’s value to LITTLE_ENDIAN. If it is Big Endian, change

the macro’s value to BIG_ENDIAN. The modified line should look like this:
#define ENDIAN_STYLE LITTLE_ENDIAN /* for Little Endian */
#define ENDIAN_STYLE BIG_ENDIAN /* for Big Endian */

d) Rebuild your project and test.

Notes

 The utility functions provided by the Formatter (e.g. MSPL_ShortIntsToBuffer) are “Endian-aware” – they are
programmed check and ensure that transfers from interpreted data types to raw buffers conform to
Endianess of the platform.

 If you use your own code for such transfers, remember to address the issue of Endianess. Raw data in a
Modbus packet is always in Big Endian format.

 To know the Endianess of your platform, refer to the User Manual of your processor.

 If you are unsure of the Endianess of your platform, a simple technique to determine this is to create a ‘C’
program with an unsigned short int variable (16-bit) and store the value 0xABCD in it:

unsigned short int testVar = 0xABCD;

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 8

Then debug this program and see the memory contents (using a Memory Dump or Memory Watch window)
at the location of this variable. If you find 0xAB stored first and then 0xCD, you have a Big Endian system,
else you have a Small Endian system.

2.2.1 More about Endianness
Endianness is the byte (and sometimes bit) ordering used to represent some kind of data.
Also referred to as byte order.

For example a ‘C’ variable of data type float consists of four bytes. There are variations in storage sequence of these
four bytes among different systems.

Endianess is crucial in communication systems implementation. Need to ensure that data reaches destination in the
correct byte order.

Two most commonly used byte ordering systems are:

 Big Endian. Most significant byte of data unit is stored first in memory followed by the rest in descending order
of significance. Motorola 68000 and PowerPC are examples of processors that adopt Big Endian byte ordering.

 Little Endian. The least significant byte of data unit is stored first in memory followed by the rest in ascending
order of significance. Examples of such processors are Intel x86 and Z80.

Note: Most modern computer processors agree on bit ordering inside individual bytes. The library therefore has no

provision for manipulating bit ordering.

2.3 Select Modbus framing type (RTU or TCP)
The library supports two modes of Modbus communication, Modbus RTU and Modbus TCP. This can be set at
compile time by setting the value of the MODBUS_MODE macro.

Steps

a) Open file MSPL_UserIf.h
b) Locate the definition of macro MODBUS_MODE
c) To configure the library to run in Modbus TCP mode, change the above macro’s value to MODBUS_TCP. To set

it to Modbus RTU mode, change the macro’s value to MODBUS_RTU. The modified line should look like this:
#define MODBUS_MODE MODBUS_TCP /* for Little Endian */
#define MODBUS_MODE MODBUS_RTU /* for Big Endian */

d) Rebuild your project and test.

Notes

 Since this is a compile time setting, the mode cannot be changed dynamically at run time.

 Only one Modbus mode can be enabled at a time.

2.4 Glue MSPL to device interface
A communication channel has to be set up between physical device and the Modbus library in order to receive
Modbus request packets and transmit response packets.
The Modbus standard provides allows users to choose their own communication channel. Modbus compliant
software is therefore unaware of the characteristics of particular communication channels.
Therefore the library provides a set of unimplemented (i.e. empty) hook functions that can be glued to the real
interface functions of your communication channel.
The hook functions cover the four communication operations.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 9

S.No. Channel
Operation

Hook Function Porting Notes

1 Open Port MSPL_OpenPort Use this function to open and configure
communication channel

 User application must call this function once for every
channel supported by the device

 A unique channel identification number is passed as
an argument to this function.

 Device driver API usually returns a path identifier or
handle to the channel being opened. This is required
in subsequent operations: read, write and
close. Please ensure that your program stores this
identifier. See Win32 port implementation as an
example.

2 Read from
channel

MSPL_ReadPort Library calls this function to read data from
communication channel

 Function typically calls device driver’s “Read” API

 A unique channel number is passed as an argument to
identify the channel.

 Caution: Blocking calls to device driver API’s in this
function will block execution of MSPL-C as well as the
application code that is calling the library.

3. Write to
channel

MSPL_WritePort Library calls this function to transmit data on
communication channel

 Function typically calls device driver’s “Write” API

 A unique channel number is passed as an argument to
identify the channel.

 Caution: Blocking calls to device driver API’s in this
function will block execution of MSPL-C as well as the
application code that is calling the library.

4. Close Port MSPL_ClosePort Use this function to close communication channel

 User application calls this function when no Modbus
communication is required

 A unique channel number is passed as an argument to
identify the channel.

2.4.1 Supporting Modbus communication on multiple channels
MSPL-C supports simultaneous Modbus communication on multiple channels.
This is achieved by dedicating a set of all global variables to each communication channel.
Each channel now operates upon its own private dataset. In effect the library can be used to create virtual Modbus
devices.
The macro MAX_NETWORKS is used to set the maximum number of channels required in the implementation.
Set this at compile time because the library uses static memory allocation.

2.4.2 Supporting multiple Modbus TCP connections in MSPL-C
A Modbus TCP slave application is listens for connection requests on the Modbus port no. and accepts multiple
connections. This requires a dedicated thread or task to listen for connection requests and accept them while
another set of dedicated threads and tasks handle further communication with connected masters.

In MSPL-C, each connected socket is considered as a channel of communication. There are three approaches you can
take to support for multiple Modbus TCP connections.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 10

i. A dedicated thread for listening to connection requests and accepting them. Another set of threads to do
further communication with connected clients (i.e. one thread per connected client). The connection
handling thread can block waiting for new connection requests in this case.

ii. A dedicated thread for listening to connection requests and accepting them. Another thread (i.e. just one
thread) to do further communication with connected clients. In this case too, the connection handling
thread can block waiting for new connection requests.

iii. On platforms that do not have a facility for multitasking, a single thread (i.e. the main thread) will have to
do the task of both listening for new connection requests as well as handling communication with connected
clients. Obviously, the connection handling code cannot block waiting for new connection requests. Instead
such code should only query the underlying TCP/IP stack to enquire if a new connection request has come in.
If yes, it must be accepted and execution must continue to the code that handles further Modbus
communication with the connected clients.

The Win32 port of MSPL-C demonstrates how to support multiple Modbus TCP connections simultaneously.

2.5 Glue MSPL-C to application and database

2.5.1 Glue library to Application
The library handles the task of framing and de-framing Modbus messages. The data within the messages are
supplied by respective application programs. The library encapsulates this data as per Modbus framing rules and
transmits it to the recipient.

Using the functions Read Coil and Write Coil to illustrate.

 Read Coil: In response to the Read Coil command, the application program running on the slave will supply data
to the library. The library will frame the data in accordance to Modbus framing rules and send it to the master,
completing the transaction.

 Write Coil: The application running on the master supplies the data to the library. The library encapsulates the
data in the right frames and forwards the framed message to the slave program, which executes the command.

Two functions in the MSPL_UserIf.c file facilitate the interface between the library and your application and
database.

 MSPL_ReadUserData: Called by MSPL-C when it receives a “read” type of Modbus request.

 MSPL_WriteUserData: Called by MSPL-C when it receives a “write” type of Modbus request.

User is responsible for implementing these interface functions.

These two functions present a well defined interface that is fully documented in this manual. The library supplied to
you contains dummy implementations of these functions with no code within.

Please refer to sample Win32 port for a complete reference.

2.5.2 Glue library to simulated Database
A simulated database forms part of the library supplied. It has a few variables of all the data types supported by the
library.
Use this database as a first step to get the library working on your platform. This exercise will assist in integrating
the library with the application’s database.

The database is created at the beginning of the MSPL_UserIf.c file and contains the following data elements:

S.No. Data Element Associated
Modbus Data Type

Number
of Arrays

Memory Address

1 CSPL_U8 (single byte) Coils, Discrete
Inputs

2 0000 to 0015 (16 items)

2 CSPL_U16 (two byte) Holding and Input
Registers

2 0000 to 0010 (10 items)

3 Demonstrate mapping Float 1 0020 to 0029 (5 floats using

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 11

register to long integer 10 registers)

4 Demonstrate mapping
register to long integer

Long Integer – 4
bytes

1 0040 to 0049 (5 long integers
using 10 registers)

5 Demonstrate mapping
register to string

Strings 1 0060 to 0063 (8 characters
that can hold a ‘C’ string of
max length 7 using 4
registers)

The interface functions in the MSPL_UserIf.c file operate upon this simulated database.
After testing with this database, you may replace it with your own. Modify the interface functions to operate on
your database.

2.5.3 Using the Data Formatter to map ‘C’ data types to Modbus
MSPL-C provides you an extension to the Modbus specifications by supplying a set of functions in
file CSPL_Utils.c that map the low level Modbus types (bits and words) to high level ‘C’ data types (floats, integers
and strings) with due consideration to the ENDIAN format of your platform.

There are two categories of functions:
- Functions that convert an array of raw data bytes as received via Modbus to an array of higher level ‘C’ data type.

They are usually called in MSPL_WriteUserData to interpret the raw Modbus data as per the corresponding
higher level ‘C’ datatype of the user database.

- Functions that convert an array of some higher level ‘C’ data type into an array of raw data bytes that can be
transmitted via Modbus. They are usually called in MSPL_ReadUserData toprovide the library with user data in a
Modbus compliant format.

Following is a brief description of each function:

Function name Description

CSPL_PackBits This function bit-packs a destination buffer with bit status
information provided in a source buffer. The source buffer is
expected to contain bit status (i.e a value of 0 or 1) in one byte
per bit. This data is bit-packed as 8-bits per byte in the
destination buffer. For e.g. if the input buffer is of this type:
 CSPL_U8 srcBuffer[] = {0,1,1,0,1,1,0,0}
then the destination buffer’s first element will be stuffed with
the following value – 0x6C;

CSPL_UnPackBits This function extracts bit status information from the source
buffer by unpacking the bits and copies it to the destination
buffer. The source buffer is expected to have bit packed data
with one byte holding the status of 8 bits. For e.g. if the if the
input buffer is of this type:
 CSPL_U8 srcBuffer[]={0xF1, 0xAB}
then this function will unpack this data to create the following in
the destination buffer
 CSPL_U8 dstBuffer[]={1,1,1,1, 0,0,0,1, 1,0,1,0, 1,0,1,1}

CSPL_16BitIntsToBuffer This function will copy data from a short integer array (i.e. two
byte integer) to an array of single byte values.

CSPL_32BitIntsToBuffer This function is similar to CSPL_16BitIntsToBuffer with the
difference that it operates on 4-byte integer array.

CSPL_FloatsToBuffer This function is similar to CSPL_16BitIntsToBuffer with the
difference that it operates on a floating point array. Each
floating point value is represented by four bytes in the
destination buffer.

CSPL_StringToBuffer This function copies a ‘C’ string into an array of bytes including
the terminating NULL character. It can be used send a character

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 12

string from the user database to a Modbus master.

CSPL_BufferTo16BitInts This function performs the reverse task as
the CSPL_16BitIntsToBuffer function by mapping an array of
bytes to a short integer array.

CSPL_BufferTo32BitInts This function performs the reverse task as
the CSPL_32BitIntsToBuffer function by mapping an array of
bytes to a long integer (4-byte) array.

CSPL_BufferToFloats This function performs the reverse task as
the CSPL_FloatsToBuffer function by mapping an array of bytes
to a floating point array

CSPL_BufferToString This function performs the reverse task as
the CSPL_StringToBuffer function by mapping an array of bytes
to a ‘C’ string.

2.6 Configure diagnostics
MSPL-C has embedded debugging code to printout out useful information to enable users to analyse, debug and
diagnose the function of the library. Such code can be enabled only during initial development and disabled later to
save code space as well as to decrease the CPU utilisation of the library.
The type of debugging statements output by the library also controlled at four levels as discussed in section 2.6.1
All diagnostics settings are done using ‘C’ macros making them configurable only at compile time and not at run
time. So configuring diagnostics can be done with the following steps:

Step 1. Select debugger level.
Step 2. Include or exclude support for formatted I/O
Step 3. Implement the debug “sink”

2.6.1 Step-1: Select debugger level
Enabling the debugger and setting the debug level is done by defining a value for the DEBUG_LEVEL macro. This
macro is defined in MSPL_UserIf.h
e.g.

#define DEBUG_LEVEL DEBUG_ERROR

This macro can be assigned one of the following values:

Macro Value Description

DEBUG_NONE This value disables the debugger. No debugging statements are
output from the library. This is the value you will use once your
application has been fully tested and ready to be released.

DEBUG_ERROR This value causes the debugger to output statements when any
error occurs in the library. In a well tested application there should
be very few occurrences of “error debugger statements”. In a way,
it’s a good idea to set the debugger to this level during the initial
period after a release is done in order to capture errors that might
occur post-release. An example of an error condition is when the
library finds that the Modbus packet that has arrived is larger than
the buffer size configured. In this case the library outputs this
message:
“Error: MSPL_ReadMbPdu: Buffer too small to read PDU”

DEBUG_WARNING This value causes the debugger to output relevant messages when
errors occur or when conditions occur that could potentially lead
to errors. An example of a warning is when the library receives a
Modbus request with the function code set to an unsupported
value. In this case the library outputs this message:
“Warning: Unsupported function code, sending exception
response”

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 13

DEBUG_INFORMATION This value causes the debugger to output routine information that
indicates the overall status of the library and also shows the flow
of execution, in addition to error and warning messages. This is the
setting you will use in diagnosing any errors reported in the
application. For instance when the library receives a Modbus read
request for Coils, it outputs the following informational message:
“==> FC=0x01 (Read Coils) “

DEBUG_VERBOSE This value causes the debugger to output messages that can be
used for deep debugging. An example of such a message is when
the library outputs the value of each byte of the Modbus packet
received by it as well as that of the response. This setting is useful
in diagnosing difficult problems but at the same time generates an
overwhelming amount of messages that can get you lost.

2.6.2 Step-2: Include or exclude Formatted I/O support
If a function like sprintf that implements formatted I/O is supported on the platform, the library can make

use of it to create more meaningful debugging messages. For instance if a Modbus request with an unsupported
function code is received, the debug message will be formatted to contain the unsupported function code to make it
easier to debug the problem.

Support for formatted I/O can be configured by setting the macro STDIO_SUPPORTED to a value of ‘1’ and
providing the name of the function to be used in the macro FORMATTED_STRING_PRINT. Both these macros are
defined in MSPL_UserIf.h.

#define STDIO_SUPPORTED 1 // Enable formatted I/O support

#define FORMATTED_STRING_PRINT sprintf

2.6.3 Step-3: Implement the debug “sink”
The debugging messages output by the library have to be finally output to a physical device like a display, a

printer or a serial terminal etc. This output device is referred to as the debug sink. To provide the flexibility of
choosing the debug sink to the user, the library outputs its messages to a function called MSPL_DebugPrint. This
function is defined in MSPL_UserIf.c but is left unimplemented (i.e. an empty function). Users should implement this
function and sink the debug message passed as an argument to an appropriate device.
The format of this function is as below:

void MSPL_DebugPrint(CSPL_U8 networkNo, CSPL_U8 eventType,
 char* debugMessage)

Parameters:
 i. networkNo (IN): The network who Modbus instance generated this debug print. This paramter enables

redirecting of debug prints from different networks to different sinks so that they do not all get jumbled.

 ii. eventType (IN): Indicates the debug level at which this debug print was made. Possible values are one of:
DEBUG_VERBOSE, DEBUG_INFORMATION, DEBUG_WARNING and DEBUG_ERROR. A possible use of this
information is to print debug messages of different levels in different colours.

 iii. debugMessage (IN): A null-terminated ‘C’ string containing the debug message.

Shown below is a very simple implementation of this hook function that adds a time stamp to the debugger
message and prints it to the standard output device.

void MSPL_DebugPrint(CSPL_U8 networkNo, CSPL_U8 eventType, char* debugMessage)
{

/* Add a time stamp to the debugger message & print it to the
standard output */

SYSTEMTIME st;
GetLocalTime(&st);
printf("%d:%d:%d.%03d - %s", st.wHour, st.wMinute, st.wSecond,
 st.wMilliseconds, debugMessage);

}

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 14

2.7 Optimise MSPL-C
 Design constrains change from one platform to another. While someone is constrained for Data Memory
(RAM) space, someone else is short of Code (Program) Memory (ROM/Flash) while yet another is short of both. In
order to accommodate MSPL within the design constraints of most users, we have provided mechanisms to save
RAM, ROM or both. The following sub sections describe the steps involved in using each of these techniques.

2.7.1 Set optimal buffer sizes
The library uses memory buffers to store incoming Modbus packets before decoding them and to store

response packets before transmitting them. The sizes of these two buffers can be controlled by limiting the
maximum number of Modbus data items (i.e. coils, registers etc.) that a master can request in one Modbus
transaction. For instance if a Modbus Master sends a readrequest for 100 registers in one packet, the resulting
response packet size will be greater than 200 bytes in comparison to a read request for just 10 registers. You can
configure the library to entertain requests that can fit into a specific buffer size by defining the following macros:

Macro Name Location Remarks

RX_BUFFER_SIZE MSPL_UserIf.h Limits the size of incoming packets. If the incoming
request packet size cannot be accommodated in this
buffer size, the library outputs an “Error” debugger
message, discards the received packet and sends no
response to the master.

TX_BUFFER_SIZE MSPL_UserIf.h Limits the size of outgoing packets.
Note: No check is made by the library to verify if a
Modbus request results in a response packet whose
size is larger than this size.

2.7.1.1 Modbus Block Size Macros
Modbus block size is the number of data items that a master zor operate upon in one Modbus transaction.
The size of a Modbus packet is limited to 256 bytes for Modbus RTU and 260 bytes for Modbus TCP. This in

effect itself limits the number of items that can be operated upon in one transaction as below:

Transaction Max permissible block size

Read Coils, Read Discrete Inputs 2000 coils and Discrete Inputs respectively

Read Holding Registers, Read Input
Registers

125 registers

Write Multiple Coils 1968 coils

Write Multiple Registers 123 registers

However, in order to receive and service Modbus transactions that stretch up to the above max permissible

limits, a device needs a transmit and a receive buffer of 256 bytes (260 in case of Modbus TCP). This may not be
available or necessary in small devices employing low end microcontrollers.

MSPL provides a way of using a lower buffer sizes and a set of macros which can be used to filter out
Modbus transactions that exceed a set limit for block size. They are:

 RD_BLK_SIZE_BITINFO

 WR_BLK_SIZE_BITINFO

 RD_BLK_SIZE_REGINFO

 WR_BLK_SIZE_REGINFO
These macros must be set along with RX_BUFFER_SIZE and TX_BUFFER_SIZE to optimize the use of memory.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 15

2.7.2 Enable only the function codes you require
The code size occupied by the library can be minimized by including only the Modbus functions required in

your application and excluding others. For instance, if your device has only digital inputs, there is no use of including
support for Modbus function Read Holding Register. The library provides a set of macros using which you can
selectively include or exclude Modbus functions.

2.7.2.1 How to use the Modbus function support macros
To include support for a Modbus function, set the macro to ‘1’, else set it to ‘0’.
Example:
#define INCLUDE_READ_COILS 1 // Adds code to support Read Coils function
#define INCLUDE_READ_COILS 0 // Excludes code that implements Read Coils

 // function

2.7.2.2 How does the library respond to an unsupported function request
When the library receives a request for an unsupported Modbus function it responds with Modbus Exception code
0x01 (ILLEGAL FUNCTION).

2.7.2.3 List of supported macros

Macro Name Modbus Function Affected

INCLUDE_READ_COILS Read Coils (Function Code 0x01)

INCLUDE_READ_DISCRETE_IP Read Discrete Inputs (Function Code 0x02)

INCLUDE_READ_INPUT_REGS Read Input Registers (Function Code 0x04)

INCLUDE_READ_HOLDING_REGS Read Holding Registers (Function Code 0x03)

INCLUDE_WRITE_COILS Write Multiple Coils (Function Code 0x0F)

INCLUDE_WRITE_REGISTERS Write Multiple registers (Function Code 0x10)

2.7.3 Reduce Code Memory size by excluding support for message counters
The library maintains counters for total Modbus messages received by it, total messages responded by it,

total errors encountered and so on. This functionality is optional, not mandatory, as per the Modbus standard. So
you may exclude this functionality by setting macro INCLUDE_MSG_CTRS to zero.

#define INCLUDE_MSG_CTRS 0 // Exclude message counters related code

2.7.4 Reduce Code Memory size by configuring CRC macros (Modbus RTU only)
The amount of Code Memory (sometimes called Program Memory) used by the library can be reduced using

two technics.
Method 1: Move CRC tables into Data Memory (RAM)
Steps

a) Open file MSPL_UserIf.h
b) Locate the definition of macro CRC_TABLE_LOCATION
c) Change its value to IN_RAM. The modified line should look like this:

#define CRC_TABLE_LOCATION IN_RAM
d) Rebuild your project. You should see a reduction in code size by approximately 512 bytes and a

corresponding increase in RAM usage.

Description

Two tables of 256 constant values are used in computing CRC bytes. The location of these tables is
configurable. The above steps cause the tables to be stored in data memory. This saves code memory at the expense
of data memory by moving the tables into RAM. Since RAM is faster than ROM access, this method may also improve
the efficiency of code execution.
Method 2: Eliminate CRC table storage by computing table contents dynamically
Steps

a) Open file MSPL_UserIf.h
b) Locate the definition of macro CRC_TABLE_LOCATION

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 16

c) Change its value to CREATE_DYNAMIC. The modified line should look like this:
#define CRC_TABLE_LOCATION CREATE_DYNAMIC

d) Rebuild your project. You should see a reduction in code size by approximately 512 bytes without a
proportional increase in RAM usage.

Description

This setting eliminates the two CRC tables altogether by computing the values of this table dynamically as
and when required. This saves both code memory as well as data memory. However, since the CRC table contents
are computed twice (once for verifying the CRC of received request ADU and again for computing the CRC for the
response ADU) for every Modbus transaction, this method considerable increases the load on the CPU. This may lead
to slower response times from the library.

2.7.5 Reduce Data Memory (RAM) size by configuring CRC macros
The amount of Data Memory (sometimes called as RAM) used by the library can be reduced using two

techniques.
Method 1: Move CRC tables into Code Memory (ROM)
Steps

a) Open file MSPL_UserIf.h
b) Locate the definition of macro CRC_TABLE_LOCATION
c) Change its value to IN_ROM. The modified line should look like this:

#define CRC_TABLE_LOCATION IN_ROM
d) Rebuild your project. You should see a reduction in RAM usage but an increase in the code size.

Description

Two tables of 256 constant values are used in computing CRC bytes. The location of these tables is
configurable. The above steps cause the tables to be stored in code memory. This saves data memory (RAM) at the
expense of code memory (ROM) by moving the tables into ROM.

2.8 Build and test your port with the supplied Modbus Protocol Tester
If you have reached here then you have:

 Created a project in your IDE and added the MSPL files to it
 Implemented the hook functions to glue the library to your platform’s physical interface
 Implemented the hook functions to glue the library to your application’s database or are using the

simulated database
 Configured the debugger
 Defined appropriate values for various open macros to set the Endian style, optimise the memory

utilisation etc.
Use the facilities of the IDE now to compile and build the project and download it to your target. You can

test this port with the bundled Modbus Protocol Tester application.

2.8.1 Modbus Protocol Tester - Overview
The Modbus Protocol Tester or MPT in short is a simple Windows Modbus Master application that enables a

user to send Modbus requests to a slave device and decode the response. It can be configured to poll specified data
points in the slave device at a periodic interval and generate a log if any error occurs. It can display raw Modbus
packets as well as the data extracted from a Modbus packet. The data can be shown as raw Modbus data (bits and
words) or as interpreted data (integers, floats and so on). It is an excellent light-weight test tool to validate a
Modbus device’s compliance to the supported function codes and also perform stress tests on it by bombarding it
with Modbus requests.

2.8.2 Installing Modbus Protocol Tester
The setup file for the Modbus Protocol Tester can be downloaded by following this link -

https://www.rtipsonline.com/WebPages/download.html and follow the onscreen instructions to complete the
installation.

https://www.rtipsonline.com/WebPages/download.html

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 17

2.8.3 Help on using Modbus Protocol Tester
Modbus Protocol Tester online user’s manual can be found

at https://www.rtipsonline.com/WebPages/Downloads/MPT_User_Manual.pdf

3 Making calls into MSPL-C APIs
Once you have ported the library to your platform, it is time to make calls into its API’s. The following table

shows a list of API’s that may be called by the user’s application:

API When to call Mandatory? Remarks

MSPL_RunModbus Periodically for
every channel,
as soon as
some bytes
have arrived
into the
channel.

Yes This is the main entry point
into the library, also called as
the trigger function.

 This function triggers the stack
which checks if data has
arrived on the specified
channel and processes it.

 This function must be called
after the communication
channel’s device driver is
queried to see if some data
has been received in its buffer.

MSPL_OpenPort On program
start up, once
for every
communication
channel to be
opened and
initialised.

No
(optional)

 The user is free to perform
channel initialisation outside
of the library in which case this
function need not be
implemented and/or called.

MSPL_ClosePort Once per
channel when
Modbus
communication
is no longer
required on
that channel.

No
(optional)

 In applications where Modbus
communication is expected to
be active until the device is
switched OFF, this function
need not be called at all.

 As for MSPL_OpenPort, user
may choose to implement
channel de-initialisation code
outside the library in which
case this function need not be
implemented or called.

MSPL_GetMessageCounters When the
value of
statistical
counters
maintained by
the stack are
required.

No
(optional)

 Details of the counters can be
found in the function
reference section
for MSPL_GetMessageCounter
s()

https://www.rtipsonline.com/WebPages/Downloads/MPT_User_Manual.pdf

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 18

3.1 Flowchart for MSPL-C API invocation
Diagram below shows a flowchart of invocation of the MSPL_OpenPort function

and MSPL_RunModbus function.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 19

4 MSPL-C Configurator for easy configuration of the library
The MSPL-C Configurator is a Windows software that you can use to graphically set values for macros of the

library. This tool directly modifies the MSPL_UserIf.c file in the same manner as you would change values for macros
manually.

4.1 How to use the MSPL-C Configurator
Figure above shows a snapshot of the MSPL-C Configurator User Interface. The following is the procedure to

use this utility:
Step 1. Click “Browse” to navigate to the folder containing the MSPL-C source files and select the

file MSPL_UserIf.c (only this file is required to begin using the utility). On choosing the file, all fields in
the UI will get populated with the values of macros read from this file. The pathname of the folder
selected appears in the text box labelled “MSPL-C Location”.

Step 2. Modify values of any of the configuration parameter that you desire.

Step 3. In the process if you intend to discard any changes you have done and reset the UI to the values
in MSPL_UserIf.c, press “Reload”

Step 4. Once you are satisfied with the changes made by you save them back to the MSPL_UserIf.c file by
pressing “Save Changes”. This step will modify this file by changing the values of the macros contained
in it. So ensure that the file is writable.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 20

4.2 MSPL-C Configurator Settings
Each control on the configurator window controls the value of a macro. Table below provides the full list of

controls and the macros that they affect. Descriptions of the macros themselves are covered in various sub-sections
of the section “How to port MSPL-C to your platform”.

Control Group Control Name Macro affected Value set for macro

CRC Table
Location
Settings

CRC Tables in
ROM

CRC_TABLE_LOCATION IN_ROM

CRC Tables in
RAM

CRC_TABLE_LOCATION IN_RAM

Dynamic CRC
Tables

CRC_TABLE_LOCATION CREATE_DYNAMIC

Enable
Function
Groups

Read Coils INCLUDE_READ_COILS 1 if checked, else 0

Read Discrete
Inputs

INCLUDE_READ_DISCRETE_IP 1 if checked, else 0

Read Holding
Registers

INCLUDE_READ_HOLDING_REGS 1 if checked, else 0

Read Input
Registers

INCLUDE_READ_INPUT_RaEGS 1 if checked, else 0

Write Coils INCLUDE_WRITE_COILS 1 if checked, else 0

Write Holding
Registers

INCLUDE_WRITE_REGISTERS 1 if checked, else 0

Debugger
Settings

Enable Debugging DEBUG_LEVEL DEBUG_NONE if
unchecked else one of
the values below

Verbose DEBUG_LEVEL DEBUG_VERBOSE

Information DEBUG_LEVEL DEBUG_INFORMATION

Warning DEBUG_LEVEL DEBUG_WARNING

Error DEBUG_LEVEL DEBUG_ERROR

STDIO Supported STDIO_SUPPORTED 1 if checked, else 0

Modbus Mode Modbus TCP MODBUS_MODE MODBUS_TCP

Modbus RTU MODBUS_MODE MODBUS_RTU

Endian Style Big Endian ENDIAN_STYLE BIG_ENDIAN

Little Endian ENDIAN_STYLE LITTLE_ENDIAN

Modbus Block
Size Limits

Read Bit Status RD_BLK_SIZE_BITINFO Value entered in text
box. Permitted range:
8-2000.

Read Register
Value

RD_BLK_SIZE_REGINFO Value entered in text
box. Permitted range:
1-125.

Write Bit Status WR_BLK_SIZE_BITINFO Value entered in text
box. Permitted range:
8-1968.

Write Register
Value

WR_BLK_SIZE_REGINFO Value entered in text
box. Permitted range:
1-123.

Variable
Location
Modifiers

Const variables in
ROM

CRC_TABLE_LOC_MODIFIER Text entered in text
box

Variables in
external RAM

DATA_IN_XRAM Text entered in text
box

Network
Settings

No. of Networks MAX_NETWORKS Value entered in text
box

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 21

5 Using MSPL-C in a multitasking environment
Two most common types of multitasking environments in use are the process based RTOS and a task based

RTOS. They differ in the following characteristics:

Process based RTOS Task based RTOS

Each process has a dedicated global memory
space.

All tasks share a common global memory
space.

A global variable with the same name can
exist between two processes.

A global variable created in one file is visible
to all tasks. So global variables should have
unique names.

Functions of a library used by a process need
not be re-entrant or thread-safe since a call
to it by multiple processes will always act
only on the global data of the calling process,
if any.

Since function calls by any of the tasks act on
shared global data, functions of a library used
by multiple tasks simultaneously need be re-
entrant or thread-safe.

Examples: WinCE, OS9 Examples: VxWorks, uC/OS II, MQX, embOS

MSPL-C has its set of global variables. So these differences have an impact on how MSPL-C can be used in these

multitasking environments. Consider the following guidelines when using MSPL-C in an RTOS:
a. In a process based RTOS, fork multiple processes to support many Modbus TCP connections with each

process handling one connection. However, set MAX_NETWORKS macro in MSPL_UserIf.h to one (1) only.
Each process behaves as if it is the only Modbus device in the system.

b. In a task based RTOS, fork multiple tasks to support many Modbus TCP connections. In this case the
MAX_NETWORKS macro should be set to the maximum number of tasks that will simultaneously use the
library.

6 MSPL-C Reference

6.1 MSPL-C Data Types
These data types are defined in CSPL_MbDefs.h

MSPL-C Data type Native definition

CSPL_U8 unsigned char

CSPL_U16 unsigned short int

CSPL_U32 unsigned int

CSPL_I8 char

CSPL_I16 short int

CSPL_I32 int

CSPL_BOOL typedef enum _CSPL_BOOL
{
 CSPL_FALSE,
 CSPL_TRUE
}CSPL_BOOL;

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 22

6.2 MSPL-C Function Reference

6.2.1 MSPL_UserInit

Function name MSPL_UserInit

Description This function is called by MSPL_Init() in order to allow any
user/application specific initialization to be done. This is a good place, for
instance, to create/link to any synchronization semaphores, initialize your
own application global’s or print some start up messages.

Returns CSPL_BOOL. A status code. This code is passed back by MSPL_Init() to its
caller who can take appropriate action on failure.

Possible return
values

CSPL_TRUE – All user/application specific initialization went OK.
CSPL_FALSE – Something went wrong during user de-initialization.

Arguments None

Called by Library

User
Implements?

Yes

6.2.2 MSPL_UserDeInit

Function name MSPL_ UserDeInit

Description This function is called by the MSPL_DeInit() function of the library in order
to allow any user/application specific de-initialisation/cleanup to be done.
This is a good place, for instance, to close handles to any operating
system objects that the application code might be using.

Returns CSPL_BOOL. A status code. This code is passed back by MSPL_DeInit() to
its caller who can take appropriate action on failure.

Possible return
values

CSPL_TRUE – All user/application specific de-initialisation went OK.
CSPL_FALSE – Something went wrong during user de-initialisation.

Arguments None

Called by Library

User
Implements?

Yes

6.2.3 MSPL_OpenPort

Function name MSPL_ OpenPort

Description This function should open communication port and initialise it so as to get
it ready for receiving Modbus packets and sending responses.
This is the place to set all communication parameters like baud rate,
parity, port timeouts etc. This function is not internally called by the
library but must be called by the user during start up of his application,
once for each port that will support Modbus communication.

Returns CSPL_U8. A value indicating if the specified port was opened and
initialised successfully or not.

Possible return
values

CSPL_TRUE – The specified port was opened and initialised successfully.
CSPL_FALSE – The specified port could not be opened or initialised.

Arguments CSPL_U8
networkNo

A number identifying the “port” or channel used for
Modbus communication that is to be initialised.

Called by User application

User
Implements?

Yes

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 23

6.2.4 MSPL_ClosePort

Function name MSPL_ ClosePort

Description The implementation of this function should close the specified port and
release all resources held by it. This function is not called directly by the
library. It must instead be called by the user of the library when Modbus
support on a communication port is no longer required.

Returns CSPL_U8. A value indicating success or failure of the function.

Possible return
values

CSPL_TRUE – The port was closed successfully.
CSPL_FALSE – The port could not be closed successfully.

Arguments CSPL_U8
networkNo

A number identifying the “port” or channel to be
closed.

Called by User application

User
Implements?

Yes

6.2.5 MSPL_CheckSlaveId

Function name MSPL_CheckSlaveId

Description This function is called by the library soon after it reads the Slave ID field
from a Modbus ADU in order to know if the Modbus packet is intended
for this device or not. The implementation of this function should return a
value indicating if the packet is to be processed further or not.

Returns CSPL_BOOL. A value indicating if the slave ID passed identifies this device
or not.

Possible return
values

CSPL_TRUE – Slave ID passed identifies this device and so this Modbus
ADU may be processed further.
CSPL_FALSE – Slave ID passed does not identify this device.

Arguments CSPL_U8 slaveID The slave ID to be validated.

CSPL_U8
networkNo

The network on which this Modbus ADU was received.
this parameter may be ignored if the device presents
itself on all the networks with the same slave ID.

Called by Library

User
Implements?

Yes

6.2.6 MSPL_ValidateAddresses

Function name MSPL_ ValidateAddresses

Description This function is called by the library to check if the combination of data
address range and the function code in the Modbus PDU is valid for this
device.

Returns CSPL_BOOL. A value indicating if the address range is valid or not. If not,
the library responds to this ADU with an ILLEGAL DATA ADDRESS (0x02)
Exception response.

Possible return
values

CSPL_TRUE – The address range is valid.
CSPL_FALSE – The address range is not valid.

Arguments CSPL_U8 slaveID A single byte value containing the slave ID of the ADU
for which the data addresses are to be validated.
The slave ID is useful in cases where the library is being
used to implement a virtual multi slave device where
validation of addresses will be different for different
slave ID’s. If the device behaviour is independent of the
slave ID to which a Modbus request is addressed to,

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 24

then this parameter may be ignored.

CSPL_U8
networkNo

The network on which this Modbus ADU was received.
If the device behaviour is independent of the network
on which a Modbus request is received, then this
parameter may be ignored.

CSPL_U8
functionCode

A single byte value of the Modbus function code
associated with the data addresses to be validated.

CSPL_U16
startAddress

A two-byte value that is the first address in the range to
be validated.

CSPL_U16
noOfItems

A two-byte value that is the number of addresses
starting from startAddress that are to be validated.

Called by Library

User
Implements?

Yes

6.2.7 MSPL_ReadUserData

Function name MSPL_ ReadUserData

Description The library calls this function for all PDU’s that contain a Modbus “read”
service request and expects its implementation to copy the relevant data
from the user’s database to the buffer it passes as one of the arguments.
The buffer passed for holding the data must be filled in a specific format
as indicated below, the format itself being data type specific. Helper
functions are provided in file CSPL_Utils.c to assist the user in easily filling
this buffer in the correct format. The formats have been chosen to keep
the usage of memory to the minimum.

Type of data Format in which data is to be stored in pBuffer

Bit Status Bit stuffed as 8 status information in one byte

Registers One register as two consecutive bytes in big endian
format

Returns CSPL_U8. A value indicating if the read request was processed
successfully or not.

Possible return
values

= 0 – if the service request executed successfully
> 0 – if the service request failed in which case the library sends a SLAVE
DEVICE FAILURE Exception response (code 0x04) to the Modbus master.

Arguments CSPL_U8 slaveID A single byte value containing the slave ID of the ADU
for which the data addresses are to be validated.
The slave ID is useful in cases where the library is being
used to implement a virtual multi slave device where
validation of addresses will be different for different
slave ID’s. If the device behaviour is independent of the
slave ID to which a Modbus request is addressed to,
then this parameter may be ignored.

CSPL_U8
networkNo

The network on which this Modbus ADU was received.
If the device behaviour is independent of the network
on which a Modbus request is received, then this
parameter may be ignored.

CSPL_U8
functionCode

A single byte value of the Modbus function code that
defines the Modbus service request. This parameter
can be checked to see what kind of data (coil, discrete
input, register etc.) is being requested for.

CSPL_U16
startAddress

A two-byte value that is the first address in the range of
data being requested for.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 25

CSPL_U16
noOfItems

A two-byte value that is the number of data items
starting from startAddress that are being requested for.

CSPL_U8
*pBuffer

Pointer to an array of bytes into which the requested
data must be copied into in the correct format.
Appropriate helper functions may be used in stuffing
the data in the right format into this buffer.

Called by Library

User
Implements?

Yes

6.2.8 MSPL_WriteUserData

Function name MSPL_ WriteUserData

Description This function is used transfer data from a Modbus PDU to the user’s
database. The library calls this function for all PDU’s that contain a
Modbus “write” service request and expects its implementation to copy
the relevant data from the buffer it passes as one of the arguments to the
user’s database. The buffer passed contains the PDU data in a specific
format as described below. Helper functions are provided in file
CSPL_Utils.c to assist the user in easily decoding and copying data in this
buffer to his application’s database. The formats have been chosen to
keep the usage of memory to the minimum.

Type of data Format in which data is stored in pBuffer

Bit Status Bit stuffed as 8 status information in one byte

Registers One register as two consecutive bytes in big endian
format

Returns CSPL_U8. A value indicating if the write request was processed
successfully or not.

Possible return
values

= 0 – if the service request executed successfully
> 0 – if the service request failed in which case the library sends a SLAVE
DEVICE FAILURE Exception response (code 0x04) to the Modbus master.

Arguments CSPL_U8 slaveID A single byte value containing the slave ID of the ADU
for which the data addresses are to be validated.
The slave ID is useful in cases where the library is being
used to implement a virtual multi slave device where
validation of addresses will be different for different
slave ID’s. If the device behaviour is independent of the
slave ID to which a Modbus request is addressed to,
then this parameter may be ignored.

CSPL_U8
networkNo

The network on which this Modbus ADU was received.
If the device behaviour is independent of the network
on which a Modbus request is received, then this
parameter may be ignored.

CSPL_U8
functionCode

A single byte value of the Modbus function code that
defines the Modbus service request. This parameter
can be checked to see what kind of data (coil, discrete
input, register etc.) is present in the buffer and which
Modbus service is being used to write the data.

CSPL_U16
startAddress

A two-byte value that is the first address in the range of
data being written to.

CSPL_U16
noOfItems

A two-byte value indicating the number of data items
starting from startAddress that are being written to.
If functionCode is 0x05 or 0x06 then noOfItems will be

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 26

‘1’.

CSPL_U8
*pBuffer

Pointer to an array of bytes containing the data. The
library fills this buffer with data from the received PDU.

Called by Library

User
Implements?

Yes

6.2.9 MSPL_ReadPort

Function name MSPL_ ReadPort

Description This function is called by the library to read a Modbus packet from a
communication port.

Returns CSPL_U8. A value indicating success or failure of the function.

Possible return
values

CSPL_TRUE - if the function is able to read at least one byte from the port
before a read timeout occurs. The actual number of bytes read should be
stored in pNoOfBytesRead.
CSPL_FALSE – if the function is unable to read any byte from the port
before a read timeout occurs or if it encounters an error in reading the
port. In this case an error code indicating the reason for failure should be
stored in pErrorCode argument.

Arguments CSPL_U8
networkNo

A number identifying the “port” to be read.

CSPL_U16
noOfBytesToRead

The number of bytes to read on this port.

CSPL_U16
*pNoOfBytesRead

A pointer to the variable that receives the actual
number of bytes read.

CSPL_U8 *pBuffer A pointer to the buffer that receives the data read
from the port.

CSPL_U8
*pErrorCode

A pointer to the variable that receives an error code in
case of failure of this function.

Called by Library

User
Implements?

Yes

6.2.10 MSPL_WritePort

Function name MSPL_ WritePort

Description This function is called by the library to write a Modbus response packet to
a communication port.

Returns CSPL_U8. A value indicating success or failure of the function.

Possible return
values

CSPL_TRUE - if the function is able to write at least one byte to the port
before a write timeout occurs. The actual number of bytes written should
be stored in pNoOfBytesWritten.
CSPL_FALSE – if the function is unable to write any byte to the port before
a write timeout occurs or if it encounters an error in writing to the port. In
this case an error code indicating the reason for failure should be stored
in pErrorCode argument.

Arguments CSPL_U8 networkNo A number identifying the “port” to be read.

CSPL_U16
noOfBytesToWrite

The number of bytes to write to this port.

CSPL_U16
*pNoOfBytesWritten

A pointer to the variable that receives the actual
number of bytes written.

CSPL_U8 *pBuffer A pointer to the buffer containing the data to be

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 27

written to the port.

CSPL_U8
*pErrorCode

A pointer to the variable that receives an error code
in case of failure of this function.

Called by Library

User
Implements?

Yes

6.2.11 MSPL_DebugPrint

Function name MSPL_ DebugPrint

Description The library calls this function to output a debug message. Users may
implement this function to sink the debug message to an output device of
their choice (e.g. to a printer, to an LCD, to a file and so on.). This function
is called only when debugging is enabled by way of macro DEBUG_LEVEL.

Returns None

Arguments CSPL_U8
networkNo

The network on which a Modbus transaction was
occurring that caused this debug message. This
argument enables redirecting of debug prints from
different networks to different sinks so that they do not
all get jumbled.

CSPL_U8
eventType

The debug level of this message. Possible values are:

 DEBUG_VERBOSE

 DEBUG_INFORMATION

 DEBUG_WARNING

 DEBUG_ERROR.
A possible use of this information is to print debug
messages of different levels in different colours.

CSPL_CHAR*
debugMessage

A null-terminated ‘C’ string containing the debug
message.

Called by Library

User
Implements?

Yes

6.2.12 MSPL_RunModbus

Function name MSPL_RunModbus

Description This is the entry point function into the library which must be run
periodically to execute the Modbus stack. When called, it reads the
channel (passed as an argument) to check if any data has been received. If
so, it attempts to process the packet received as a Modbus frame and if
required sends out a response.

Returns CSPL_U8. A status code as shown in section below titled “Status codes

returned by function MSPL_RunModbus”

Arguments CSPL_U8
networkNo

The channel on which this function must look for a
Modbus packet. The library passes this parameter to
every hook function that it calls from MSPL_UserIf.h.
Since this function processes one channel at a time, it
must be called once for every channel configured for
Modbus in your system.

Called by User application

User
Implements?

No

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 28

6.2.13 Status codes returned by function MSPL_RunModbus
The following error codes may be returned by the main entry point function MSPL_RunModbus. They are defined
in CSPL_MbDefs.h

Error Code Remarks

MSPL_NO_ERROR 0x00 No error was encountered and the function executed
successfully

UNKNOWN_ERROR 0x01 An unknown error occurred reading / writing to port.
This indicates that the underlying device driver API
for read/write returned an unknown code when
invoked.

INVALID_HANDLE 0x02 An invalid handle or path ID was used to read from /
write to the port.

INVALID_NETWORKNUM 0x03 An uninitialized network number was passed as a
parameter. Indicates that an attempt was made to
use a channel that has not been initialised with a call
to MSPL_OpenPort().

READ_WRITE_FAIL 0x04 Device failure reading / writing to port. Indicates that
the underlying device driver API for read/write
returned an error code.

READ_WRITE_TIMEOUT 0x05 Timeout occurred reading / writing bytes. Indicates
that the library called MSPL_ReadPort which
returned with no data but a timeout.

ID_MISMATCH 0x06 The slave ID found in the Modbus request does not
match this device. Indicates that the library
encountered a message that was directed to a
different slave. In case of Modbus RTU, this could
occur frequently when using a shared bus like RS485
whereas in case of Modbus TCP, this error code
indicates a true errpr.

CRC_ERR 0x07 The message contained incorrect CRC Bytes.
Indicates a corrupt message. Modbus RTU only.

BUFFER_TOO_SMALL 0x08 The request message has more bytes than the
available size of buffer. Indicates that the master is
trying to read or write too many Modbus data units
that the block sizes configured for the library.

PORT_CLOSED 0x09 The communication port was closed when trying to
read or write on it. This error commonly occurs when
a TCP connection is closed just when the library was
trying to read from the channel.

INVALID_FC 0x0A An invalid/unsupported function code was requested
to be serviced.

6.2.14 MSPL_GetMessageCounters

Function name MSPL_GetMessageCounters

Description This function provides the value of various message counters maintained
by the stack.

Returns MSPL_MB_MSG_CTRS. A structure containing the counters maintained
by the stack. See section below titled “Structure MSPL_MB_MSG_CTRS”
for details of these counters.

Arguments CSPL_U8
networkNo

The channel whose counters are being requested. The
stack maintains an exclusive set of counters for each

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 29

channel.

Called by User application

User
Implements?

No

6.2.14.1 Structure MSPL_MB_MSG_CTRS

Member Data Type Description of the counter

busMsgCnt CSPL_U32 Quantity of messages that the remote device has
detected on the communication channel since its last
restart, clear counters operation or power–up.

busCommErrCnt CSPL_U32 Quantity of CRC errors encountered by the remote
device on this channel since its last restart, clear
counters operation or power–up. This member is
present only in Modbus RTU mode.

busExcpErrCnt CSPL_U32 Quantity of MODBUS exception responses returned by
the remote device since its last restart, clear counters
operation or power–up.

slvMsgCnt CSPL_U32 Quantity of messages addressed to the remote device,
or broadcast on this channel, that the remote device has
processed since its last restart, clear counters operation,
or power–up.

6.3 Macro Reference

6.3.1 MODBUS_MODE

Macro name MODBUS_MODE

Description Controls the Modbus framing type followed by the library.

Permitted Values MODBUS_TCP Sets framing type to Modbus TCP

MODBUS_RTU Sets framing type to Modbus RTU

Remarks Two framing types are supported by the library – Modbus RTU and
Modbus TCP.

6.3.2 ENDIAN_STYLE

Macro name ENDIAN_STYLE

Description Defines the Endian style of the processor running the library.

Permitted Values LITTLE_ENDIAN Processor is of type Little Endian

BIG_ENDIAN Processor is of type Big Endian

Remarks Since Modbus is Big Endian, appropriate conversion logic is required
when the library is run on a Little Endian processor. The library uses
this macro to run such conversion logic conditionally wherever
required.

6.3.3 Macros for exclusion of unsupported Modbus functions

Macro name INCLUDE_READ_COILS
INCLUDE_READ_DISCRETE_IP
INCLUDE_READ_INPUT_REGS
INCLUDE_READ_HOLDING_REGS
INCLUDE_WRITE_COILS
INCLUDE_WRITE_REGISTERS

Description Selectively includes or excludes support for a Modbus function.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 30

6.3.4 INCLUDE_MSG_CTRS

Macro name INCLUDE_MSG_CTRS

Description Controls inclusion or exclusion of code related to maintenance of
message counters in the library.

Permitted Values 1 Includes source code for supporting message counters

0 Excludes source code for supporting message counters

Remarks Used to compress the code size by excluding support for message
counters.

6.3.5 RD_BLK_SIZE_BITINFO

Macro name RD_BLK_SIZE_BITINFO

Description Fixes the maximum limit to the number of bit status information (both
coils and discrete inputs) that may be requested by a Master in one
Modbus transaction.

Permitted Values 8 to 2000

Remarks A smaller block size limit will enable setting a smaller value for
macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus response packets.

 If a Read Coils or Read Discrete Inputs request is received with the
number of items set to more than RD_BLK_SIZE_BITINFO, the library
responds with an ILLEGAL DATA ADDRESS (0x03) exception code.

6.3.6 RD_BLK_SIZE_REGINFO

Macro name RD_BLK_SIZE_REGINFO

Description Fixes the maximum limit to the number of register values (both holding
registers and input registers) that may be requested by a Master in one
Modbus transaction.

Permitted Values 1 to 125

Remarks A smaller block size limit will enable setting a smaller value for
macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus response packets.

 If a Read Holding Registers or Read Input Registers request is
received with the number of items set to more than
RD_BLK_SIZE_REGINFO, the library responds with an ILLEGAL DATA
ADDRESS (0x03) exception code.

6.3.7 WR_BLK_SIZE_BITINFO

Macro name WR_BLK_SIZE_BITINFO

Description Fixes the maximum limit to the number of coils that may be written to
by a Master in one Modbus transaction.

Permitted Values 8 to 1968

Remarks A smaller block size limit will enable setting a smaller value for

Permitted Values 1 Includes source code for the related Modbus functions

0 Excludes source code for the related Modbus functions

Remarks Used to optimise library by excluding source code of unsupported
functions thus making the library smaller.

 The macro names are self suggestive of the Modbus functions that
they affect.

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 31

macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus request packets.

 If a Write Multiple Coils request is received with the number of
items set to more than WR_BLK_SIZE_BITINFO, the library responds
with an ILLEGAL DATA ADDRESS (0x03) exception code.

6.3.8 WR_BLK_SIZE_REGINFO

Macro name WR_BLK_SIZE_REGINFO

Description Fixes the maximum limit to the number of holding registers that may
be written to by a Master in one Modbus transaction. A smaller block
size limit will enable setting a smaller value for macro RX_BUFFER_SIZE
thus reducing the memory used by the library for holding Modbus
request packets.

Permitted Values 1 to 123

Remarks A smaller block size limit will enable setting a smaller value for
macro TX_BUFFER_SIZE thus reducing the memory used by the
library for holding Modbus request packets.

 If a Write Multiple Registers request is received with the number of
items set to more than WR_BLK_SIZE_REGINFO, the library
responds with an ILLEGAL DATA ADDRESS (0x03) exception code.

6.3.9 RX_BUFFER_SIZE and TX_BUFFER_SIZE

Macro name RX_BUFFER_SIZE
TX_BUFFER_SIZE

Description These macros control the sizes of receive and transmit buffers that the
library allocates for receiving Modbus requests and sending responses.

Permitted Values 7 - 256 Modbus RTU

11 - 260 Modbus TCP

Remarks RX_BUFFER_SIZE must be set large enough for the library to support
the block size limits specified by WR_BLK_SIZE_BITINFO and
WR_BLK_SIZE_REGINFO.

 TX_BUFFER_SIZE must be set large enough for the library to support
the block size limits specified by RD_BLK_SIZE_BITINFO and
RD_BLK_SIZE_REGINFO.

 The recommended way to set these macros is by using the MSPL
configurator which automatically calculates the values for the
buffers based on the values set for the block size limiting macros.

 If these macros are manually set, ensure that the buffers are large
enough to hold the MBAP header (Modbus TCP only) or the
Slave/Server Address (Modbus RTU only), the Modbus PDU and the
CRC bytes (Modbus RTU only)

6.3.10 STDIO_SUPPORTED

Macro name STDIO_SUPPORTED

Description Indicates to the library if the platform supports formatted I/O or not.

Permitted Values 1 Formatted I/O supported

0 Formatted I/O not supported

Remarks This macro is used by the library when creating debug messages.

 If the value for this macro is 1, the library formats debug messages
with relevant numerical information by using sprint formatted I/O
function. If not, the debug messages are plain textual information

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 32

only.

 If this macro is set to 1, then the
macro FORMATTED_STRING_PRINTmust also be set to the name of
the function on your platform that provides standard
‘C’ sprint function-like functionality. Relevant header file may have
to be included within MSPL_UserIf.h file to support your formatted
I/O function.

6.3.11 FORMATTED_STRING_PRINT

Macro name FORMATTED_STRING_PRINT

Description This macro must be set to the name of the ‘C’ function that can do a
formatted print into a ‘C’ string. Usually the name of such a function is
itself sprint.

Permitted Values Name of formatted string print function.

Remarks This macro is used only when STDIO_SUPPORTED is set to 1.

 See remarks under STDIO_SUPPORTED for more information.

6.3.12 DEBUG_LEVEL

Macro name DEBUG_LEVEL

Description This macro is used to enable or disable output of debugging messages
by the library and to set the type of instances for which a debug
message is generated.

Permitted Values DEBUG_NONE Debug message generation is disabled.

DEBUG_ERROR Debug messages are generated only when
error conditions occur in the library
execution.

DEBUG_WARNING Debug messages are generated only when
error conditions or such other conditions
occur in the library execution that could lead
to potential error conditions.

DEBUG_INFORMATION In addition to generating debug messages
under error and warning conditions messages
are generated that provide a general status
indication of the execution of the stack.

DEBUG_VERBOSE This setting is a superset of the above three
settings. In addition to debug messages for all
the above conditions, extensive messages are
printed out with as much information for the
user as would be required for deep
debugging.

Remarks As the debug level increases from DEBUG_NONE to
DEBUG_VERBOSE, the code memory occupied by the library as well
as the CPU utilisation by it increase.

 It is recommended to set the level to DEBUG_ERROR in the release
version of your product. This will help catch errors in the field.

6.3.13 DEBUG_COLSIZE

Macro name DEBUG_COLSIZE

Description When DEBUG_LEVEL is set to DEBUG_VERBOSE, the length of debug

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 33

messages could become too large. This macro can be used to limit the
no. of characters per debug message.

Permitted Values 32 to 132

Remarks This macro is useful in ensuring that the debug messages fit the
column size of your output device (e.g. some printers have 64
character column width while larger ones have 132 characters)

6.3.14 CRC_TABLE_LOCATION

Macro name CRC_TABLE_LOCATION

Description This macro is used to control the manner in which the CRC tables are
created and stored in the library thereby optimising the use of code
and data memory.

Permitted Values CREATE_DYNAMIC CRC tables are created dynamically during
runtime and not pre-created and stored in
RAM or ROM.

IN_RAM CRC tables are created once at the start of the
program and stored in data memory (RAM).

IN_ROM CRC tables are stored in code memory (ROM)
as a const array.

Remarks This macro is used only in MODBUS RTU mode.

 The CREATE_DYNAMIC setting saves both data and code memory at
the cost of lower performance during runtime since the CRC tables
have to be created for every Modbus packet received.

 The IN_RAM setting saves ROM (code memory) at the cost of using
more data memory. Access to the CRC tables could be faster since
RAM access is faster than ROM access.

 The IN_ROM setting saves RAM (data memory) at the cost of using
more code memory.

6.3.15 CRC_TABLE_LOC_MODIFIER

Macro name CRC_TABLE_LOC_MODIFIER

Description This macro is used to set the keyword that will cause constant variables
in code memory (ROM).

Permitted Values The keyword used for forcing constant variables into code memory. E.g.
the keyword ‘const’

Remarks Many compilers by default may store constant variables in code
memory. If so, set this macro to a blank.

6.3.16 DATA_IN_XRAM

Macro name DATA_IN_XRAM

Description This macro is used to set the keyword that will cause variables to be
placed in external memory.

Permitted Values The keyword used for forcing constant variables into code memory. E.g.
the keyword ‘xdata’

Remarks Microcontrollers have internal RAM (sometimes in the form of on-
chip registers) and external RAM (also on-chip but not a part of the
MCU core). This keyword is used to force program variables to be
placed in the external RAM.

 The location of program variables also depends on the memory
model of setting of the compiler. For instance a large memory

RTips Technologies

User Manual - Modbus Slave Protocol Library Page 34

model could by default place all program variables in external ram
in which case this macro setting becomes irrelevant.

 The library uses this macro to modify the location of transmit buffer
and the receive buffer since they form the major component of
memory usage by the library. All other variables used in the library
are placed in the default memory type defined by the memory
model setting.

6.3.17 MAX_NETWORKS

Macro name MAX_NETWORKS

Description This macro must be set to the maximum number of communication
channels that the library will communicate on.

Permitted Values 1 to a reasonable maximum value.

Remarks The library allocates as many sets of global variables as the value of
this macro.

 The actual number of channels used for communication may be less
than this value.

	1 Architecture
	1.1 MSPL Block Schematic
	1.2 Directory Structure
	1.3 Files
	1.4 Hooks and Macros

	2 Porting
	2.1 Add source code to your project
	2.2 Set Endian Architecture
	2.2.1 More about Endianness

	2.3 Select Modbus framing type (RTU or TCP)
	2.4 Glue MSPL to device interface
	2.4.1 Supporting Modbus communication on multiple channels
	2.4.2 Supporting multiple Modbus TCP connections in MSPL-C

	2.5 Glue MSPL-C to application and database
	2.5.1 Glue library to Application
	2.5.2 Glue library to simulated Database
	2.5.3 Using the Data Formatter to map ‘C’ data types to Modbus

	2.6 Configure diagnostics
	2.6.1 Step-1: Select debugger level
	2.6.2 Step-2: Include or exclude Formatted I/O support
	2.6.3 Step-3: Implement the debug “sink”

	2.7 Optimise MSPL-C
	2.7.1 Set optimal buffer sizes
	2.7.1.1 Modbus Block Size Macros

	2.7.2 Enable only the function codes you require
	2.7.2.1 How to use the Modbus function support macros
	2.7.2.2 How does the library respond to an unsupported function request
	2.7.2.3 List of supported macros

	2.7.3 Reduce Code Memory size by excluding support for message counters
	2.7.4 Reduce Code Memory size by configuring CRC macros (Modbus RTU only)
	2.7.5 Reduce Data Memory (RAM) size by configuring CRC macros

	2.8 Build and test your port with the supplied Modbus Protocol Tester
	2.8.1 Modbus Protocol Tester - Overview
	2.8.2 Installing Modbus Protocol Tester
	2.8.3 Help on using Modbus Protocol Tester

	3 Making calls into MSPL-C APIs
	3.1 Flowchart for MSPL-C API invocation

	4 MSPL-C Configurator for easy configuration of the library
	4.1 How to use the MSPL-C Configurator
	4.2 MSPL-C Configurator Settings

	5 Using MSPL-C in a multitasking environment
	6 MSPL-C Reference
	6.1 MSPL-C Data Types
	6.2 MSPL-C Function Reference
	6.2.1 MSPL_UserInit
	6.2.2 MSPL_UserDeInit
	6.2.3 MSPL_OpenPort
	6.2.4 MSPL_ClosePort
	6.2.5 MSPL_CheckSlaveId
	6.2.6 MSPL_ValidateAddresses
	6.2.7 MSPL_ReadUserData
	6.2.8 MSPL_WriteUserData
	6.2.9 MSPL_ReadPort
	6.2.10 MSPL_WritePort
	6.2.12 MSPL_RunModbus
	6.2.13 Status codes returned by function MSPL_RunModbus
	6.2.14 MSPL_GetMessageCounters
	6.2.14.1 Structure MSPL_MB_MSG_CTRS

	6.3 Macro Reference
	6.3.1 MODBUS_MODE
	6.3.2 ENDIAN_STYLE
	6.3.3 Macros for exclusion of unsupported Modbus functions
	6.3.4 INCLUDE_MSG_CTRS
	6.3.5 RD_BLK_SIZE_BITINFO
	6.3.6 RD_BLK_SIZE_REGINFO
	6.3.7 WR_BLK_SIZE_BITINFO
	6.3.9 RX_BUFFER_SIZE and TX_BUFFER_SIZE
	6.3.10 STDIO_SUPPORTED
	6.3.11 FORMATTED_STRING_PRINT
	6.3.12 DEBUG_LEVEL
	6.3.13 DEBUG_COLSIZE
	6.3.14 CRC_TABLE_LOCATION
	6.3.15 CRC_TABLE_LOC_MODIFIER
	6.3.16 DATA_IN_XRAM
	6.3.17 MAX_NETWORKS

